[1]张友谊,钟 磊,樊晓一,等.岷江河谷锄头沟震后泥石流致灾模式[J].山地学报,2021,(5):756-766.[doi:10.16089/j.cnki.1008-2786.000636)]
 ZHANG Youyi,ZHONG Lei,FAN Xiaoyi,et al.New Geo-Disaster Forming Pattern of Post-Shock Debris Flow: A Case Study of the Chutou Gully in the Minjiang River Valley, China[J].Mountain Research,2021,(5):756-766.[doi:10.16089/j.cnki.1008-2786.000636)]
点击复制

岷江河谷锄头沟震后泥石流致灾模式()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第5期
页码:
756-766
栏目:
研究简报
出版日期:
2021-09-25

文章信息/Info

Title:
New Geo-Disaster Forming Pattern of Post-Shock Debris Flow: A Case Study of the Chutou Gully in the Minjiang River Valley, China
文章编号:
1008-2786-(2021)5-756-11
作者:
张友谊1钟 磊1樊晓一2顾成壮1田述军1
1.西南科技大学 土木工程与建筑学院,四川 绵阳621010; 2.西南石油大学 土木工程与测绘学院,成都 610500
Author(s):
ZHANG Youyi1 ZHONG Lei1 FAN Xiaoyi2 GU Chengzhuang1 TIAN Shujun1
1.School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; 2.School of Civil Engineering and Mapping, Southwest Petroleum University, Chengdu 610500,China
关键词:
汶川地震 8.20泥石流 放大效应 锄头沟
Keywords:
Wenchuan earthquake August 20 debris flow amplification effect Chutou gully
分类号:
P642.22
DOI:
10.16089/j.cnki.1008-2786.000636)
文献标志码:
A
摘要:
锄头沟位于岷江河谷汶川县绵虒镇羌锋村,是汶川地震震后大型活跃型泥石流沟,震后大规模泥石流活动造成锄头沟泥石流拦挡工程失效,多次淤积损毁都汶高速公路G317和国道G213。震后泥石流治理工程对泥石流的发展起到一定遏制作用,也改变了泥石流的致灾模式。本文通过实地调查与数据分析,探讨了2019年8.20锄头沟泥石流的成因及对工程设施的致灾模式,提出了拦挡坝对翻坝泥石流能力的放大机理。研究表明:(1)锄头沟8.20泥石流灾害是由各支沟暴发、主沟铲刮而形成的大规模泥石流,受侵蚀铲刮效应影响其冲出规模放大约44.2%;(2)锄头沟泥石流致灾模式主要为:翻坝加速、侵蚀铲刮、侧蚀强烈、弯道雍高、磨蚀槽底、堵断桥涵、冲淤民房;(3)锄头沟泥石流现仍处于发展壮年期,在未来10~20年内遇强降雨仍会暴发大规模泥石流;(4)翻坝泥石流的破坏能力和拦砂坝坝高及过坝运动速度密切相关,当初速度为2 m/s、坝高25 m时,泥石流入射速度是初速度的11.1倍,故有效坝高较高、速度较低的翻坝泥石流对坝下的沟道仍具有很强的冲蚀能力;(5)当过坝泥石流初速度一定时,有效坝高对翻坝泥石流的水平距离的增幅呈下降趋势,这可为坝下副坝位置的选取或护坦尺寸的设定提供科学依据。
Abstract:
The Chutou gully in Qiangfeng Village, Wenchuan County, China has become a large active debris flow gully after the 2008 Wenchuan earthquake. Large-scale debris flows at the Chutou gully has caused engineering failures in control facilities and multiple damages to highway G317 and national road G213. Engineered measuring in debris flow control facilities not only restrains debris flow development, but also reduce the extent of earthquake-induced debris flow. This paper explored the cause of a debris flow event on August 20, 2019 at the Chutou gully and its driving mechanism for engineering control purposes based on detailed field investigation. The factors that amplify the energy during debris flow over dams were also discussed. The results show that the August 20, 2019 disasters were large-scale debris flow that formed by the outbreak of each branch ditch and scraping by the main ditch. The scale of the debris flow was magnified by approximately 44.2% owing to erosion linked to debris flow scraping. The debris flows disasters at the Chutou gully mainly involved the acceleration of dam wall breaches, erosion linked to scraping, intensified lateral erosion, bend heightening, slot base abrasion, bridge and culvert blockages, and the scouring and silting of civilian buildings. The debris flow at the Chutou gully remains its development stage, and large-scale debris flow disasters are expected to continue to occur over the upcoming 10~20 years in cases of heavy rainfall. The scale of debris-flow destruction in dam wall breaches was closely related to the debris dam height and debris flow velocity while overtopping the dam. For an initial velocity of 2 m/s and dam height of 25 m, the debris flow incident velocity was 11.1 times higher than that of the initial velocity. The dam breaching debris flow, therefore, has strong ability to erode the channel beneath the dam under conditions of higher effective dam heights and lower velocities. For a given initial debris flow velocity over a dam, higher effective dam heights can reduce the increase of horizontal displacement, thus providing a scientific basis for the location selection of an auxiliary dam under a dam or the size setting of a protective dam.

参考文献/References:

[1] 张向营, 张春山,孟华君,等. 地震扰动区泥石流起动阈值研究现状及展望[J]. 灾害学,2017,32(1):221-227. [ZHANG Xiangying, ZHANG Chunshan, MENG Huajun, et al.The review and development trend of critical threshold value of debris flow in earthquake influenced area [J]. Journal of Catastrophology, 2017, 32(1):221-227] DOI: 10.3969/j.issn.1000-811X.2017.01.039
[2] TANG H, MCGUIRE L A, RENGERS F K, et al. Developing and testing physically based triggering thresholds for runoff-generated debris flows [J]. Geophysical Research Letters, 2019, 46(15):8830-8839. DOI: 10.1029/2019GL083623
[3] CORREA O, GARCIA F, BERNAL G, et al. Early warning system for rainfall-triggered landslides based on real-time probabilistic hazard assessment [J]. Natural Hazards, 2020, 100(1):345-361. DOI: 10.1007/s11069-019-03815-w
[4] 潘青,张清照,李艺灵. 基于EDEM的碎屑流运动规律及冲击性能研究[J]. 工程地质学报,2020,28(5):1057-1065. [PAN Qing, ZHANG Qingzhao, LI Yiling. Discrete element simulation study of debris flow movement law and impact performance [J]. Journal of Engineering Geology, 2020, 28(5):1057-1065] DOI: 10.13544/j.cnki.jeg.2020-315
[5] 崔鹏,庄建琦,陈兴长,等. 汶川地震区震后泥石流活动特征与防治对策[J]. 四川大学学报(工程科学版),2010,42(5):10-19. [CUI Peng, ZHUANG Jianqi, CHENG Xingchang, et al. Characteristics and countermeasures of debris flow in Wenchuan area after the earthquake [J]. Journal of Sichuan University(Engineering Science Edition), 2010, 42(5):10-19] DOI: 10.15961/j.jsuese.2010.05.004
[6] 崔鹏,韦方强,何思明,等. 5·12汶川地震诱发的山地灾害及减灾措施[J]. 山地学报,2008,26(3):280-282. [CUI Peng, WEI Fangqiang, HE Siming, et al. Mountain disasters induced by the earthquake of may 12 in Wenchuan and the disasters mitigation [J]. Mountain Research, 2008,26(3):280-282]
[7] 谢洪,钟敦伦,矫震,等. 2008年汶川地震重灾区的泥石流[J]. 山地学报,2009,27(4): 501-509. [XIE Hong, ZHONG Dunlun, JIAO Zhen, et al. Debris flow in Wenchuan quake-hit area in 2008 [J]. Mountain Research, 2009, 27(4):501-509] DOI: 10.16089/j.cnki.1008-2786.2009.04.010
[8] 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报,2011,19(2):145-151. [HUANG Runqiu. After effect of geohazards induced by the Whenchuan earthquake [J]. Journal of Engineering Geology, 2011,19(2):145-151]
[9] 勒文,张国涛,邹强,等. 震后泥石流活跃期的新认识——以四川汶川“8.20”灾害事件为例[J]. 山地学报,2019,37(5):787-796. [JIN Wen, ZHANG Guotao, ZOU Qiang, et al. A new understanding of the activity behavior of post-earthquake debris flow-taking the “8.20” event in Wenchuan, Sichuan, China as an example [J]. Mountain Research, 2019, 37(5): 787-796] DOI: 10.16089/j.cnki.1008-2786.000469
[10] 冯德志. 汶川县国道G213线锄头沟泥石流形成机理与危险性评价研究[D]. 成都:西南交通大学,2016:7-41. [FENG Dezhi. Research on debris flow formation mechanism and hazard assessment of Chutou gully, Wenchuan county [D]. Chengdu: Southwest Jiaotong University, 2016:7-41]
[11] 严炎,葛永刚,张建强,等.四川省汶川县簇头沟“7.10”泥石流灾害成因与特征分析[J].灾害学,2014,29(3):229-234.[YAN Yan, GE Yonggang, ZHANG Jianqiang, et al. Research on the debris flow hazards in Cutou gully, Wenchuan county on July 10, 2013 [J]. Journal of Catastrophology, 2014, 29(3):229-234] DOI: 10.3936/j.issn.1000-811X.2014.03.042
[12] 龚柯,杨涛,夏晨皓,等. 基于FLO-2D的泥石流危险性评价—以四川省汶川县绵虒镇簇头沟为例[J]. 水资源与水工程学报,2017,28(6):134-138. [GONG Ke, YANG Tao, XIA Chenhao, et al. Assessment on the hazard of debris flow based on FLO-2D: A case study of debris flow in Cutou gully, Wenchuan, Sichuan [J]. Journal of Water Resources and Water Engineering, 2017, 28(6):134-138] DOI: 10.11705/j.issn1672-643X.2017.06.23
[13] 李安润,邓辉,余天彬,等. 汶川极震区锄头沟泥石流发育特征及启动机理[J]. 四川地质学报,2019,39(2):285-288. [LI Anrun, DENG Hui, YU Tianbin, et al. Development and genetic mechanism of the Chutougou debris flow in the Wenchuan meizoseismal area [J]. Sichuan Geological Journal, 2019, 39(2):285-288] DOI: 10.3969/j.issn.1006-0995.2019.02.022
[14] 陈俊淇. 强震区泥石流物源侵蚀运移特征分析——以汶川县绵虒镇锄头沟为例[D]. 长春:吉林大学,2020:6-32. [CHEN Junqi. Analysis of material source erosion and migration characteristics of debris flows in strong earthquake areas: A case study of Chutou gully, Wenchuan, Sichuan [D]. Changchun: Jilin University, 2020:6-32] DOI: 10.27162/d.cnki.gjlin.2020.006318
[15] 李彩侠,马煜,何元勋. 泥石流致灾因子敏感性分析—以四川都江堰龙溪河流域为例[J].中国地质灾害与防治学报,2020,31(5):32-39. [LI Caixia, MA Yu, HE Yuanxun. Sensitivity analysis of debris flow to environmental factors: A case of Longxi River basin in Dujiangyan, Sichuan province [J]. The Chinese Journal of Geological Hazards and Control, 2020, 31(5):32-39] DOI: 10.16031/j.cnki.issn.1003-8035.2020.05.05
[16] WANG Jiao, JIN Wen, CUI Yifei, et al. Earthquake-triggered landslides affecting a UNESCO natural site: The 2017 Jiuzhaigou earthquake in the world national park, China [J]. Journal of Mountain Science, 2018, 15(7):1412-1428. DOI:10.1007/s11629-018-4823-7
[17] 张友谊,袁亚东,顾成壮. 震区泥石流物源储量评价方法综述[J]. 山地学报,2020,38(3):394-401. [ZHANG Youyi, YUAN Yadong, GU Chengzhuang. Review of evaluation methods for debris flow resource reserves in areas affected by earthquakes [J]. Mountain Research, 2020, 38(3):394-401] DOI: 10.16089/j.cnki.1008-2786.000519
[18] 陈兴长,陈慧,游勇,等. 泥石流拦砂坝底扬压力分布及影响因素试验[J]. 岩土力学,2018,39(9):3229-3236. [CHEN Xingchang, CHEN Hui, YOU Yong, et al. Experiment on distribution and influence factors of uplift pressure acting on bottom of debris flow check dam [J]. Rock and Soil Mechanics, 2018, 39(9):3229-3236] DOI: 10.16285/j.rsm.2016.2670
[19] 安笑,潘华利,欧国强,等. 恒定渗流作用泥石流碎屑物质起动判别模型研究[J]. 岩土力学,2020,41(Z1):115-122. [AN Xiao, PAN Huali, OU Guoqiang, et al. Recognition model on triggering debris flow under constant seepage condition [J]. Rock and Soil Mechanics, 2020, 41(Z1):115-122] DOI: 10.16285/j.rsm.2019.1425
[20] 王东坡,张小梅. 泥石流冲击弧形拦挡坝动力响应研究[J]. 岩土力学,2020,41(12):1-11. [WANG Dongpo, ZHANG Xiaomei. Study on dynamic response of debris flow impact arc-shaped dam [J]. Rock and Soil Mechanics, 2020,41(12):1-11] DOI: 10.16285/j.rsm.2020.0311
[21] 郑志山,潘华利,安笑,等. 泥石流泥舌水力特性的沿程变化实验研究[J]. 自然灾害学报,2019,28(6):154-166. [ZHENG Zhishan, PAN Huali, AN Xiao, et al. Experimental study on spatial hydraulic characteristics of debris flow jet [J]. Journal of Natural Disasters, 2019, 28(6):154-166] DOI: 10.13577/j.jnd.2019.0617
[22] 刘茂,袁磊,张鹏. 水平岩土层实体拦砂坝基底水压力研究[J]. 工程地质学报,2020,28(5):1140-1146. [LIU Mao, YUAN Lei, ZHANG Peng. Theoretical study on uplift pressure of check dam laid on horizontal soil [J]. Journal of Engineering Geology, 2020, 28(5):1140-1146] DOI: 10.13544/j.cnki.jeg.2020-151
[23] 刘兴荣,周自强,董耀刚,等. 泥石流拦挡坝破损分析及优化对策——以陇南市武都区为例[J]. 山地学报,2020,38(3):473-482. [LIU Xingrong, ZHOU Ziqiang, DONG Yaogang, et al. Investigation of the failure patterns of debris flow retaining dams and optimized engineering countermeasures-a case study at Wudu district of Longnan city, Gansu, China [J]. Mountain Research, 2020, 38(3):473-482] DOI: 10.16089/j.cnki.1008-2786.000526
[24] 李祥龙,唐辉明,熊承仁,等. 基底刮铲效应对岩石碎屑流停积过程的影响[J]. 岩土力学,2020,33(5):1527-1541. [LI Xianglong, TANG Huiming, XIONG Chengren, et al. Influence of substrate ploughing and erosion effect on process of rock avalanche [J]. Rock and Soil Mechanics, 2020, 33(5):1527-1541] DOI: 10.16285/j.rsm.2012.05.018
[25] YU Xianbin, CHEN Xiaoqing, CHEN Jiangang, et al. Impulsive forces distribution along the sediment storage dam upstream face for different mud-rock flow unit weight [J]. Environmental Earth Sciences, 2018, 77(5):169. DOI: 10.1007/s12665-018-7351-4
[26] 胡卸文,韩玫,梁敬轩,等.汶川地震灾区泥石流若干关键问题[J]. 西南交通大学学报,2016,51(2):331-340.[HU Xiewen, HAN Mei, LIANG Jingxuan, et al. Some key problems on debris flow in Wenchuan earthquake area [J]. Journal of Southwest Jiaotong University, 2016, 51(2):331-340] DOI: 10.3969/j.issn.0258-2724.2016.02.012
[27] 李宁,唐川,卜祥航,等.“5.12”地震后汶川县泥石流特征与演化分析[J].工程地质学报,2020,28(6):1233-1245. [LI Ning, TANG Chuan, BU Xianghang, et al. Characteristics and evolution of debris flows in Wenchuan county after the “5.12” earthquake [J]. Journal of Engineering Geology, 2020, 28(6):1233-1245] DOI: 10.13544/j.cnki. jeg.2019-310
[28] LI G. WEST A J, DENSMORE A L, et al. Seismic mountain building: Landslides associated with the 2008 Wenchuan earthquake in the context of a generalized model for earthquake volume balance [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4):833-844. DOI: 10.1002/2013GC005067

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(5):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(5):89.
[3]李文鑫,王兆印,王旭昭,等.汶川地震引发的次生山地灾害链及人工断链效果——以小岗剑泥石流沟为例[J].山地学报,2014,(03):336.
 LI Wenxin,WANG Zhaoyin,WANG Xuzhao,et al.Secondary Mountain Disaster Chain Induced by the Wenchuan Earthquakeand the Result of Chaincutting Engineering in the Xiaogangjian Gully[J].Mountain Research,2014,(5):336.
[4]吴超凡,邱占林,杨为民,等.汶川地震诱发的地面塌陷成因[J].山地学报,2012,(01):70.
 WU Chaofan,QIU Zhanlin,YANG Weimin,et al.Cause of Ground Collapse Triggered by the Wenchuan Earthquake[J].Mountain Research,2012,(5):70.
[5]张怀珍,范建容,胡凯衡,等.汶川地震重灾区泥石流沟内崩滑物空间分布的RS-GIS定量方法[J].山地学报,2012,(01):78.
 ZHANG Huaizhen,FAN Jianrong,HU Kaiheng,et al.Distribution of Collapse and Landslide Clast Deposit in Debris Flow Basin with RS-GIS after Wenchuan Earthquake[J].Mountain Research,2012,(5):78.
[6]黄健,巨能攀,何朝阳,等.基于WebGIS的汶川地震次生地质灾害信息管理系统[J].山地学报,2012,(03):355.
 HUNG Jian,JU Nengpan,HE Chaoyang,et al.WebGISbased Information Management System for Geohazards Triggered by Wenchuan Earthquake[J].Mountain Research,2012,(5):355.
[7]徐梦珍,王兆印,漆力健,等.汶川地震引发的次生灾害链[J].山地学报,2012,(04):502.
 XU Mengzhen,WANG Zhaoyin,QI Lijian.Disaster Chains Initiated by the Wenchuan Earthquake[J].Mountain Research,2012,(5):502.
[8]常鸣,唐川,李为乐,等.汶川地震区绵远河流域泥石流形成区的崩塌滑坡特征[J].山地学报,2012,(05):561.
 River Basin,ChinaCHANG Ming,TANG Chuan,et al.The Characteristic of Collapse and Landslide by Wenchuan Earthquake in Debris Flow for Mative Region along the Mianyuan[J].Mountain Research,2012,(5):561.
[9]杨东旭,陈晓清,游勇,等.汶川地震区绵竹小岗剑沟泥石流发展趋势[J].山地学报,2012,(06):701.
 YANG Dongxu,CHEN Xiaoqing,YOU Yong,et al.The Debris Flow Development Trend of in Xiaogangjian Gully in Mianzhu County,Wenchuan Earthquake Zone[J].Mountain Research,2012,(5):701.
[10]苏鹏程,韦方强,冯汉中,等.“8.13”四川清平群发性泥石流灾害成因及其影响[J].山地学报,2011,(03):337.
 SU Pengcheng,,et al.Causes and Effects of Groupoccurring Debris Flow Disasters in Qingping Town, Mianyuan River Upstream, Sichuan[J].Mountain Research,2011,(5):337.

备注/Memo

备注/Memo:
收稿日期(Received date):2020-12-13; 改回日期(Accepted date):2021-05-28
基金项目(Foundation item):国家重点研发计划(2018YFC1505401); 国家自然科学基金面上项目:(41971214,41877524)。[National Key Research and Development Plan(2018YFC1505401); National Natural Science Foundation of China(41971214, 41877524)]
作者简介(Biography):张友谊(1980-),男,博士,副教授,主要研究方向:工程地质。[ZHANG Youyi(1980-), male, Ph.D., associate professor, research on geological engineering] E-mail:53437391@qq.com
更新日期/Last Update: 2021-09-30