参考文献/References:
[1] CUI Peng, GE Yonggang, ZHUANG Jianqi, et al. Soil evolution features of debris flow waste-shoal land [J]. Journal of Mountain Science, 2009,6(2):181-188. DOI: 10.1007/s11629-009-1035-1
[2] DING Mingtao, TANG Chuan, MIAO Cheng. Response analysis of valley settlements to the evolution of debris flow fans under different topographic conditions: A case study of the upper reaches of Min River, China [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3):1639-1650. DOI: 10.1007/s10064-019-01641-9
[3] BRIGHENTI R, SPAGGIARI L, SEGALINI A, et al. Debris flow impact on a flexible barrier: Laboratory flume experiments and force-based mechanical model validation [J]. Natural Hazards, 2021, 106(1):735-756. DOI: 10.1007/s11069-020-04489-5
[4] TAKAHASHI T. Debris flow [J]. Annual Review of Fluid Mechanics, 1981, 13(1):57-77. DOI: 10.1146/annurev.fl.13.010181.000421
[5] PIERSON T C. Dominant particle support mechanisms in debris flows at Mt Thomas, New Zealand, and implications for flow mobility [J]. Sedimentology, 1981, 28(1):49-60. DOI: 10.1111/j.1365-3091.1981.tb01662.x
[6] BLAIR T C, MCPHERSON J G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages [J]. Journal of Sedimentary Research, 1995, 65(3a):450-489. DOI: 10.1306/d42681b7-2b26-11d7- 8648000102c1865d
[7] WHIPPLE K X, DUNNE T. The influence of debris-flow rheology on fan morphology, Owens Valley, California [J]. Geological Society of America Bulletin, 1992, 104(7):887-900. DOI: 10.1130/0016-7606(1992)1042<0887:TIODFR>2.3.CO; 2
[8] 舒安平,张欣,唐川,等. 不同坡度条件下非均质泥石流堆积过程与特征[J]. 水力学报,2013, 44(11):1333-1337+1346. [SHU Anping, ZHANG Xin, TANG Chuan, et al. Analysis on the deposition processes and characteristics of non-homogeneous debris flow [J]. Journal of Hydraulics, 2013,44(11):1333-1337+1346] DOI: 10.13243/j.cnki.slxb.2013.11.001
[9] 侯圣山,曹鹏,陈亮,等. 基于数值模拟的耳阳河流域泥石流灾害危险性评价[J]. 水文地质工程地质,2021, 48(2):1-9. [HOU Shengshan, CAO Peng, CHEN Liang, et al. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation [J]. Hydrogeology and Engineering Geology, 2021, 48(2):1-9] DOI: 10.16030/j.cnki.issn.1000-3665. 202003057
[10] BRANNEY M J, KOKELAAR P. A reappraisal of ignimbrite emplacement: Progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite [J]. Bulletin of Volcanology, 1992, 54(6):504-520. DOI: 10.1007/BF00301396
[11] MAJOR J J. Depositional processes in large-scale debris-flow experiments [J]. The Journal of Geology, 1997, 105(3): 345-366. DOI: 10.1086/515930
[12] 李泳. 蒋家沟泥石流阵流的时空特征[J]. 自然杂志,2014, 36(5):319-324. [LI Yong. Spatiotemporal characteristics of debris flow in Jiangjia Gully [J]. Chinese Journal of Nature, 2014, 36(5):319-324] DOI: 10.3969/j.issn.0253-9608.2014.05.002
[13] 马超,何晓燕,胡凯衡. 我国高频率泥石流的雨量特征[J]. 中国地质灾害与防治学报,2015, 26(2):43-50. [MA Chao, HE Xiaoyan, HU Kaiheng. Rainfall parameter characteristics of high-frequency debris flow in China [J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(2):43-50] DOI: 10.16031/j.cnki.issn.1003-8035.2015.02.08
[14] ZHOU Wei, FANG Jiaoyong, TANG Chuan, et al. Empirical relationships for the estimation of debris flow runout distances on depositional fans in the Wenchuan earthquake zone [J]. Journal of Hydrology, 2019, 577:123932. DOI: 10.1016/j.jhydrol.2019.123932
[15] DELORME P, DEVAUCHELLE O, BARRIER L, et al. Growth and shape of a laboratory alluvial fan [J]. Physical Review E, 2018, 98(1):012907. DOI: 10.1103/PhysRevE.98.012907
[16] CLARKE L, QUINE T A, NICHOLAS A. An experimental investigation of autogenic behavior during alluvial fan evolution [J]. Geomorphology, 2010, 115(3):278-285. DOI: 10.1016/j.geomorph. 2009.06.033
[17] VENTRA D, NICHOLS G J. Autogenic dynamics of alluvial fans in endorheic basins: Outcrop examples and stratigraphic significance [J]. Sedimentology, 2014, 61(3):767-791. DOI: 10.1111/sed.12077
[18] DE HAAS T, BERG W V D, BRAAT L, et al. Autogenic avulsion, channelization and backfilling dynamics of debris-flow fans [J]. Sedimentology, 2016, 63(6):1596-1619. DOI: 10.1111/sed.12275
[19] D'AGOSTINO V, CESCA M, MARCHI L. Field and laboratory investigations of runout distances of debris flows in the Dolomites(Eastern Italian Alps)[J]. Geomorphology, 2010, 115(3-4):294-304. DOI: 10.1016/j.geomorph.2009.06.032
[20] DENSMORE A L, DE HAAS T, MCARDELL B, et al. Making sense of avulsions on debris-flow fans [G]//KEAN J W, COE J A, SANTI P M, et al. Proceedings of 7th International Conference on Debris-Flow Hazards Mitigation. Golden Colorado USA: Association of Environmental and Engineering Geologists, 2019: 637-644.
[21] SUWA H, OKANO K, KANNO T. Behavior of debris flows monitored on test slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan [J]. International Journal of Erosion Control Engineering, 2009, 2(2):33-45. DOI: 10.13101/ijece.2.33
[22] DE HAAS T, DENSMORE A L, STOFFEL M, et al. Avulsions and the spatio-temporal evolution of debris-flow fans [J]. Earth Science Reviews, 2017, 177:1-52. DOI: 10.1016/j.earscirev.2017. 11.007
[23] DE HAAS T, KRUIJT A, DENSMORE A L. Effects of debris flow magnitude-frequency distribution on avulsions and fan development [J]. Earth Surface Processes and Landforms, 2018, 43(13):2779-2793. DOI: 10.1002/esp.4432
[24] FIELD J. Channel avulsion on alluvial fans in southern Arizona [J]. Geomorphology, 2001, 37(1):93-104. DOI: 10.1016/S0169-555X(00)00064-7
[25] THOMAS D S G. Arid zone geomorphology: Process, form and change in drylands [M]. Britain: Blackwell Press, 2011:333-364
[26] REITZ M D, JEROLMACK D J. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth [J]. Journal of Geophysical Research, 2012, 117:F02021. DOI: 10.1029/2011JF002261
[27] DE HAAS T, DENSMORE A L, HOND T, et al. Fan-surface evidence for debris-flow avulsion controls and probabilities, Saline Valley, California [J]. Journal of Geophysical Research: Earth Surface, 2019:1-100. DOI: 10.1029/2018JF004815
[28] LEENMAN A, EATON B. Mechanisms for avulsion on alluvial fans: Insights from high-frequency topographic data [J]. Earth Surface Processes and Landforms, 2021:1-17. DOI: 10.1002/esp.5059
[29] 周必凡,李德基,罗德富,等. 泥石流防治指南[M]. 北京:科学出版社,1991:50-90. [ZHOU Bifan, LI Deji, LUO Defu, et al. Guide for debris flow prevention and control [M]. Beijing: Science Press, 1991:50-90]
[30] 崔之久. 泥石流沉积与环境[M]. 北京:海洋出版社,1998:37-39. [CUI Zhijiu. Debris flow deposition and environment [M]. Beijing: China Ocean Press, 1998:37-39]
[31] HOOKE R L. Processes on arid-region alluvial fans [J]. The Journal of Geology, 1967, 75(4):438-460. DOI: 10.2307/30085004
相似文献/References:
[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(2):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(2):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(2):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(2):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(2):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(2):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(2):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(2):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(2):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(2):495.