参考文献/References:
[1] SHINA C L K, PANKAZ K S, RAM B P, et al. Why nature really chose phosphate [J]. Science, 1987, 235(4793): 1173-1178. DOI: 10.1126/science.2434996
[2] WATANABE M D B, ORTEGA E. Ecosystem services and biogeochemical cycles on a global scale: Valuation of water, carbon and nitrogen processes [J]. Environmental Science and Policy, 2011, 14(6): 594-604. DOI: 10.1016/j.envsci.2011.05.013
[3] NAJAM A, RAHMAN A A, HUQ S, et al. Integrating sustainable development into the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [J]. Climate Policy, 2003, 3(1): S9-S17. DOI: 10.1016/j.clipol.2003.10.003
[4] Hedley M J, Stewart J W B. Method to measure microbial phosphate in soils[J]. Soil Biology and Biochemistry, 1982, 14(4), 377-385. DOI: 10.1016/0038-0717(82)90009-8
[5] JOHNSON A H, FRIZANO J, VANN D R. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure [J]. Oecologia, 2003, 135(4): 487-499. DOI: 10.1007/s00442-002-1164-5
[6] 吴艳宏, PRIETZEL J, 周俊, 等. 两种形态分析方法对冰川退缩时间序列土壤中磷的生物有效性评价[J]. 中国科学. 地球科学, 2014, 57(15): 1860-1868. [WU Yanhong, PRIETZEL J, ZHOU Jun, et al. Soil phosphorus bioavailability assessed by XANES and Hedley sequential fractionation technique in a glacier foreland chronosequence in Gongga Mountain, southwestern China [J]. Science China Earth Sciences, 2014, 57(15): 1860-1868] DOI: 10.1007/s11430-013-4741-z
[7] ACHAT D L, BAKKER M R, MOREL C. Process-based assessment of phosphorus availability in a low phosphorus sorbing forest soil using isotopic dilution methods [J]. Soil Science Society of America Journal, 2009, 73(6): 2131-2142. DOI: 10.2136/sssaj2009.0009
[8] PRIETZEL J, KLYSUBUN W. Phosphorus K-edge XANES spectroscopy has probably often underestimated iron oxyhydroxide-bound P in soils [J]. Journal of Synchrotron Radiation, 2018, 25(6): 1736-1744. DOI: 10.1107/S1600577518013334
[9] 王吉鹏, 吴艳宏. 磷的生物有效性对山地生态系统的影响[J]. 生态学报, 2016, 36(5): 1204-1214. [WANG Jipeng, WU Yanhong. Phosphorus bioavailability in mountain ecosystems: Characteristics and ecological roles [J]. Acta Ecologica Sinica, 2016, 36(5): 1204-1214] DOI: 10.5846/stxb201407111421
[10] WU Yanhong, ZHOU Jun, YU Dong, et al. Phosphorus biogeochemical cycle research in mountainous ecosystems[J]. Journal of Mountain Science, 2013, 10(1): 43-53. DOI: 10.1007/s11629-013-2386-1
[11] FILIPPELLI G M. The global phosphorus cycle: Past, present and future [J]. Elements, 2008, 4(2): 89-95. DOI: 10.2113/GSELEMENTS.4.2.89
[12] 周俊. 海螺沟冰川退缩迹地风化——成土过程与土壤磷形态研究[D]. 成都: 中国科学院、水利部成都山地灾害与环境研究所, 2014: 3-11. [ZHOU Jun. Weathering, pedogenesis and changes of soil phosphorus speciation of Hailuogou Glacier foreland chronosequence [D]. Chengdu: Institute of Mountain Hazards and Environment, CAS, 2014: 3-11]
[13] SMAL H, LIGEZA S, PRANAGAL J, et al. Changes in the stocks of soil organic carbon, total nitrogen and phosphorus following afforestation of post-arable soils: A chronosequence study [J]. Forest Ecology and Management. 2019, 451: 117536. DOI: 10.1016/j.foreco.2019.117536
[14] FEITOSA M M, SILVA Y J A B, BIONDI C M, et al. Rare Earth elements in rocks and soil profiles of a tropical volcanic archipelago in the Southern Atlantic [J]. Catena, 2020, 194: 104674. DOI: 10.1016/j.catena.2020.104674
[15] 朱大运, 王建力. 青藏高原冰芯重建古气候研究进展分析[J]. 地理科学进展, 2013, 32(10): 1535-1544. [ZHU Dayun, WANG Jianli. Progress in palaeoclimate research on the Tibet Plateau based on ice core records [J]. Progress in Geography, 2013, 32(10): 1535-1544] DOI: 10.11820/dlkxjz.2013.10.011
[16] IVANOVA E A, PERSHINA E V, SHAPKIN V M, et al. Shifting prokaryotic communities along a soil formation chronosequence and across soil horizons in a South Taiga ecosystem [J]. Pedobiologia-Journal of Soil Ecology, 2020, 81-82: 150650. DOI: 10.1016/j.pedobi.2020.150650
[17] HARDEN J W. A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California [J]. Geoderma, 1982, 28: 1-28. DOI: 10.1016/0016-7061(82)90037-4
[18] VINCENT K R, BULL W B, CHADWICK O A. Construction of a soil chronosequence using the thickness of pedogenic carbonate coatings[J]. Journal of Geological Education, 1994, 42(4): 316-324. DOI: 10.5408/0022-1368-42.4.316
[19] MOHAMMED A K, HIRMAS D R, NEMES A, et al. Exogenous and endogenous controls on the development of soil structure [J]. Geoderma, 2020,357: 113945. DOI: 10.1016/j.geoderma.2019.113945
[20] SCHINDLER M, MICHEL S, BATCHELDOR D, et al. A nanoscale study of the formation of Fe-(hydr)oxides in a volcanic regolith: Implications for the understanding of soil forming processes on Earth and Mars [J]. Geochimica et Cosmochimica Acta, 2019, 264: 43-66. DOI: 10.1016/j.gca.2019.08.008
[21] BOCKHEIM J G. Solution and use of chronofunctions in studying soil development [J]. Geoderma, 1980, 24: 71-85. DOI: 10.1016/0016-7061(80)90035-X
[22] CHODAK M, PIETRZYKOWSKI M, NIKLINSKA M. Development of microbial properties in a chronosequence of sandy mine soils [J]. Applied Soil Ecology, 2009, 41(3): 259-268. DOI: 10.1016/j.apsoil.2008.11.009
[23] EVANS D L, QUINTON J N, TYE A M, et al. How the composition of sandstone matrices affects rates of soil formation [J]. Geoderma, 2021, 401: 115337. DOI: 10.1016/j.geoderma.2021.115337
[24] BEILKE A J, BOCKHEIM J G. Carbon and nitrogen trends in soil chronosequences of the Transantarctic Mountains [J]. Geoderma. 2013, 197-198: 117-125. DOI: 10.1016/j.geoderma.2013.01.004
[25] JENNY H, ARKLEY R J, SCHULTZ A M. The pygmy forest-podsol ecosystem and its dune associates of the Mendocino Coast [J]. Madrono 1969, 20: 60-74.
[26] VREEKEN W J. Principal kinds of chronosequences and their significance in soil history [J]. Soil Science, 1975, 26(4): 378-394. DOI: 10.1111/j.1365-2389.1975.tb01962.x
[27] SAMOUËLIAN A and CORNU S. Modelling the formation and evolution of soils, towards an initial synthesis [J]. Geoderma, 2008, 145(3-4): 401-409. DOI: 10.1016/j.geoderma.2008.01.016
[28] SCHAETZL R J, BARRETT L R, WINKLER J A. Choosing models for soil chronofunctions and fitting them to data [J]. European Journal of Soil Science, 1994, 45: 219-232. DOI: 10.1111/j.1365-2389.1994.tb00503.x
[29] YEMEFACK M, ROSSITER D G, JETTEN V G. Empirical modelling of soil dynamics along a chronosequence of shifting cultivation systems in southern Cameroon [J]. Geoderma, 2006, 133(3-4): 380-397. DOI: 10.1016/j.geoderma.2005.08.003
[30] EPPES M C, BIERMA R, VINSON D, et al. A soil chronosequence study of the Reno valley, Italy: Insights into the relative role of climate versus anthropogenic forcing on hillslope processes during the mid-Holocene [J]. Geoderma, 2008, 147(3-4): 97-107. DOI: 10.1016/j.geoderma.2008.07.011
[31] EGLI M, FITZE P, MIRABELLA A. Weathering and evolution of soils formed on granitic, glacial deposits: Results from chronosequences of Swiss alpine environments [J]. Catena, 2001, 45: 19-47. DOI: 10.1016/S0341-8162(01)00138-2
[32] BIRKELAND P W. Soil-geomorphic research-a selective overview [J]. Geomorphology, 1990, 3: 207-224. DOI: 10.1016/0169-555X(90)90004-A
[33] HAUGLAND J E, HAUGLAND B S O. Cryogenic disturbance and pedogenic lag effects as determined by the profile developmental index: The styggedalsbreen glacier chronosequence, Norway [J]. Geomorphology, 2008, 96(1-2): 212-220.
[34] SCARCIGLIA F, PELLE T, PULIVE I, et al. A comparison of Quaternary soil chronosequences from the Ionian and Tyrrhenian coasts of Calabria, southern Italy: Rates of soil development and geomorphic dynamics [J]. Quaternary International, 2015, 376: 146-162. DOI: 10.1016/j.quaint.2014.01.009
[35] HUGGETT R J. Soil chronosequences, soil development, and soil evolution: A critical review [J]. Catena, 1998, 32: 155-172. DOI: 10.1016/S0341-8162(98)00053-8
[36] CORNU S, MONTAGNE D, VASCONCELOS P M. Dating constituent formation in soils to determine rates of soil processes: A review [J]. Geoderma, 2009, 153(3-4): 293-303. DOI: 10.1016/j.geoderma.2009.08.006
[37] WALKER T W, SYERS J K. The fate of phosphorus during pedogenesis [J]. Geoderma, 1976, 15: 1-19. DOI: 10.1016/0016-7061(76)90066-5
[38] CREWS T E, KITAYAMA K, FOWNES J H, et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii [J]. Ecology, 1995, 76(5): 1407-1424. DOI: 10.2307/1938144
[39] SELMANTS P C, HART S C. Phosphorus and soil development: Does the walker and syers model apply to semiarid ecosystems? [J]. Ecology, 2010, 91(2): 474-484. DOI: 10.1890/09-0243.1
[40] IZQUIERDO J E, HOULTON B Z, VAN HUYSEN T L. Evidence for progressive phosphorus limitation over long-term ecosystem development: Examination of a biogeochemical paradigm [J]. Plant Soil, 2013, 367: 135-147. DOI: 10.1007/s11104-013-1683-3
[41] TURNER B L, CONDRON L M, WELLS A, et al. Soil nutrient dynamics during podzol development under lowland temperature rain forest in New Zealand [J]. Catena, 2012, 97: 50-62. DOI: 10.1016/j.catena.2012.05.007
[42] TURNER B L, LALIBERT? E. Soil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich mediterranean shrubland in Southwestern Australia [J]. Ecosystems, 2015, 18(2): 287-309. DOI: 10.1007/s10021-014-9830-0
[43] WU Yanhong, ZHOU Jun, BING Haijian, et al. Rapid loss of phosphorus during early pedogenesis along a glacier retreat choronosequence, Gongga Mountain(SW China)[J]. PeerJ, 2015, 3: e1377. DOI: 10.7717/peerj.1377
[44] VINDUKOV O, PNEK T, FROUZ J. Soil C, N and P dynamics along a 13 ka chronosequence of landslides under semi-natural temperate forest [J]. Quaternary Science Reviews, 2019, 213: 18-29. DOI: 10.1016/j.quascirev.2019.04.001
[45] XIAO Rong, BAI Junhong, ZHANG Honggang, et al. Changes of P, Ca, Al and Fe contents in fringe marshes along a pedogenic chronosequence in the Pearl River estuary, South China [J]. Continental Shelf Research, 2011, 31(6): 739-747. DOI: 10.1016/j.csr.2011.01.013
[46] 何清清, 邴海健, 吴艳宏, 等. 海螺沟冰川退缩区土壤元素分布特征及影响因素[J]. 山地学报, 2017, 35(5): 698-708. [HE Qingqing, BING Haijian, WU Yanhong, et al. Distribution characteristics and influencing factors of soil elements in the retreated area of Hailuogou Glacier, SW China [J]. Mountain Research, 2017, 35(5): 698-708] DOI: 10.16089/j.cnki.1008-2786.000269
[47] EGER A, ALMOND P C, CONDRON L M. Pedogenesis, soil mass balance, phosphorus dynamics and vegetation communities across a Holocene soil chronosequence in a super-humid climate, South Westland, New Zealand [J]. Geoderma, 2011, 163(3-4): 185-196. DOI: 10.1016/j.geoderma.2011.04.007
[48] VITOUSEK P M, FARRINGTON H. Nutrient limitation and soil development: Experimental test of a biogeochemical theory [J]. Biogeochemistry, 1997, 37(1): 63-75. DOI: 10.1023/A:1005757218475
[49] MAVRIS C, EGLI M, PLOTZE M, et al. Initial stages of weathering and soil formation in the Morteratsch proglacial area(Upper Engadine, Switzerland)[J]. Geoderma, 2010, 155: 359-371. DOI: 10.1016/j.geoderma.2009.12.019
[50] CELI L, CERLI C, TURNER B L, et al. Biogeochemical cycling of soil phosphorus during natural revegetation of Pinus sylvestris on disused sand quarries in Northwestern Russia [J]. Plant Soil, 2013, 367: 121-134. DOI: 10.1007/s11104-013-1627-y
[51] SCHLESINGER W H, BRUIJNZEEL L A, BUSH M B, et al. The biogeochemistry of phosphorus after the first century of soil development on Rakata Island, Krakatau, Indonesia [J]. Biogeochemistry, 1998, 40(1): 37-55. DOI: 10.1023/A:1005838929706
[52] EGER A, YOO K, ALMOND P C, et al. Does soil erosion rejuvenate the soil phosphorus inventory? [J]. Geoderma, 2018, 332: 45-59. DOI: 10.1016/j.geoderma.2018.06.021
[53] ZHOU Jun, WU Yanhong, JORG P, et al. Changes of soil phosphorus speciation along a 120-year soil choronosequence in the Hailuogou Glacier retreat area(Gongga Mountain, SW China)[J]. Geoderma, 2013, 195-196: 251-259. DOI: 10.1016/j.geoderma.2012.12.010
[54] EGLI M, FILIP D, MAVRIS C, et al. Rapid transformation of inorganic to organic and plant-available phosphorous in soils of a glacier forefield [J]. Geoderma, 2012, 189-190: 215-226. DOI: 10.1016/j.geoderma.2012.06.033
[55] CHEN C R, HOU E Q, CONDRON L M, et al. Soil phosphorus fractionation and nutrient dynamics along the Cooloola coastal dune chronosequence, southern Queensland, Australia [J]. Geoderma, 2015, 10: 11986. DOI: 10.1016/j.geoderma.2015.04.027
[56] GARDNER L R. The role of rock weathering in the phosphorus budget of terrestrial watersheds [J]. Biogeochemistry, 1990, 11(2): 97-110. DOI: 10.1007/bf00002061
[57] ZHOU Jun, BING Haijian, WU Yanhong, et al. Weathering of primary mineral phosphate in the early stages of ecosystem development in the Hailuogou Glacier foreland chronosequence [J]. European Journal of Soil Science, 2018, 69: 450-461. DOI: 10.1111/ejss.12536
[58] OHNO T, AMIRBAHMAN A. Phosphorus availability in boreal forest soils: A geochemical and nutrient uptake modeling approach [J]. Geoderma, 2010, 155(1-2): 46-54. DOI: 10.1016/j.geoderma.2009.11.022
[59] ROBERTS K, DEFFOREY D, TURNER B L, et al. Oxygen isotopes of phosphate and soil phosphorus cycling across a 6500 year chronosequence under lowland temperate rainforest [J]. Geoderma, 2015, 257-258: 14-21. DOI: 10.1016/j.geoderma.2015.04.010
[60] KANA J, KOPACEK J, CAMARERO L, et al. Phosphate sorption characteristics of European Alpine soils [J]. Soil Sci. Soc. Am. J., 2011, 75(3): 862-870. DOI: 10.2136/sssaj2010.0259
[61] 隋玉柱. 从彭阳剖面看黄土成壤模式及气候变化[D]. 兰州: 兰州大学, 2007. [SUI Yuzhu. The soil-forming mode and paleoclimatic changes of Pengyang loess section [D]. Lanzhou: Lanzhou University, 2007] DOI: 10.1016/j.quaint.2021.08.003
[62] HARDEN J W, TAYLOR E M. A quantitative comparison of soil development in four climatic regimes [J]. Quaternary Research, 1983, 20: 342-359. DOI: 10.1016/0033-5894(83)90017-0
[63] BOCKHEIM J G. Soil development rates in the Transantarctic Mountains [J]. Geoderma, 1990, 47: 59-77. DOI: 10.1016/0016-7061(90)90047-D
[64] KHOKHLOVA O S, KHOKHLOV A A, OLEYNIK S A, et al. Paleosols from the groups of burial mounds provide paleoclimatic records of centennial to intercentennial time scale: A case study from the Early Alan cemeteries in the Northern Caucasus(Russia)[J]. Catena, 2007, 71: 477-486. DOI: 10.1016/j.catena.2007.03.013
[65] SUN Feng, SONG Chengjun, WANG Mei, et al. Long-term increase in rainfall decreases soil organic phosphorus decomposition in tropical forests [J]. Soil Biology and Biochemistry, 2020, 151: 107959. DOI: 10.1016/j.soilbio.2020.108056
[66] MILLER A J, SCHUUR E A G, CHADWICK O A. Redox control of phosphorus pools in Hawaiian montane forest soils [J]. Geoderma, 2001, 102(3-4): 219-237. DOI: 10.1016/S0016-7061(01)00016-7
[67] TATE K R. The Biological Transformation of P in Soil[J]. Plant and Soil, 1984, 76: 245-256. DOI: 10.1007/BF02205584
[68] BOLAN N S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants [J]. Plant Soil, 1991, 134(2): 189-207. DOI: 10.1007/BF00012037
[69] RICHARDSON A E, LYNCH J P, RYAN P R, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture [J]. Plant Soil, 2011, 349(1-2): 121-156. DOI: 10.1007/s11104-011-0950-4
[70] PRIETZEL J, DUMIG A, WU Yanhong, et al. Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences [J]. Geochimica et Cosmochimica Acta, 2013, 108: 154-171. DOI: 10.1016/j.gca.2013.01.029
[71] DEVAU N, LE CADRE E, HINSINGER P, et al. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches [J]. Applied Geochemistry, 2009, 24(11): 2163-2174. DOI: 10.1016/j.apgeochem.2009.09.020
[72] RICHARDSON A E, SIMPSON R J. Soil microorganisms mediating phosphorus availability [J]. Plant Physiology, 2011, 156(3): 989-996. DOI: 10.1104/pp.111.175448
[73] IPPOLITO J A, BLECKER S W, Freeman C L, et al. Phosphorus biogeochemistry across a precipitation gradient in grasslands of central North America [J]. Journal of Arid Environments, 2010, 74(8): 954-961. DOI: 10.1016/j.jaridenv.2010.01.003
[74] JOBBAGY E G, JACKSON R B. The distribution of soil nutrients with depth: Global patterns and the imprint of plants [J]. Biogeochemistry, 2001, 53(1): 51-77. DOI: 10.1023/A:1010760720215
[75] PORDER S, CHADWICK O A. Climate and soil-age constraints on nutrient uplift and retention by plants [J]. Ecology, 2009, 90(3): 623-636. DOI: 10.1890/07-1739.1
[76] 舒世燕, 王克林, 张伟, 等. 喀斯特峰丛洼地植被不同演替阶段土壤磷酸酶活性[J]. 生态学杂志, 2010, 29(9): 1722-1728. [SHU Shiyan, WANG Kelin, ZHANG Wei, et al. Soil alkaline phosphatase activity at different vegetation succession stages in karst peak-cluster depression [J]. Chinese Journal of Ecology, 2010, 29(9): 1722-1728] DOI: 10.13292/j.1000-4890.2010.0313
[77] 胡忠良. 贵州中部喀斯特山区不同植被下土壤养分与微生物功能变化研究[D]. 南京: 南京农业大学, 2009: 11-16. [HU Zhongliang. The change of soil nutrients and microbial functions under different vegetation in karst mountains area, central Guizhou province [D]. Nanjing: Nanjing Agricultural University, 2009: 11-16] DOI: 10.1016/j.agee.2016.02.020
[78] HEDDE M, AUBERT M, DECA?NS T, et al. Dynamics of soil carbon in a beechwood chronosequence forest [J]. Forest Ecology and Management, 2008, 255(1): 193-202. DOI: 10.1016/j.foreco.2007.09.004
[79]MA Qingxu, WEN Yuan, MA Jinzhao, et al. Long-term farmyard manure application affects soil organic phosphorus cycling: A combined metagenomic and 33P/14C labelling study [J]. Soil Biology and Biochemistry, 2020, 149: 107959. DOI: 10.1016/j.soilbio.2020.107959
[80] ZHANG Yaqi, FINN D, BHATTACHARYYA R, et al. Long-term changes in land use influence phosphorus concentrations, speciation, and cycling within subtropical soils [J]. Geoderma, 2021, 393: 115010. DOI: 10.1016/j.geoderma.2021.115010
[81] VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions [J]. Ecological Applications, 2010, 20(1): 5-15. DOI: 10.1890/08-0127.1
[82] LAL R. Soil carbon sequestration to mitigate climate change [J]. Geoderma, 2004, 123: 1-22. DOI: 10.1016/j.geoderma.2004.01.032
[83] WARDLE D A, WALKER L R, BARDGETT R D, et al. Ecosystem properties and forest decline in contrasting long-term chronosequences [J]. Science, 2004, 305(5683): 509-513. DOI: 10.1126/science.1109723
[84] LUGO A E, BROWN S. Management of tropical soils as sinks or sources of atmospheric carbon [J]. Plant Soil, 1993, 149: 27-41. DOI: 10.1007/BF00010760
[85] POST W M, KWON K C. Soil carbon sequestration and land-use change: Processes and potential [J]. Global Change Biology, 2000, 6: 317-327. DOI: 10.1046/j.1365-2486.2000.00308.x
[86] POEPLAU C, DON A, VESTERDAL L, et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone-carbon response functions as a model approach [J]. Global Change Biology, 2011, 17: 2415-2427. DOI: 10.1111/j.1365-2486.2011.02408.x