[1]吕佳豪,侯精明*,李东来,等.溃坝洪水演进一维水动力模型[J].山地学报,2024,(1):123-131.[doi:10.16089/j.cnki.1008-2786.000809]
 LYU Jiahao,HOU Jingming*,LI Donglai,et al.One-Dimensional Hydrodynamic Model for Dam-Break Flooding[J].Mountain Research,2024,(1):123-131.[doi:10.16089/j.cnki.1008-2786.000809]
点击复制

溃坝洪水演进一维水动力模型
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第1期
页码:
123-131
栏目:
山地技术
出版日期:
2024-01-25

文章信息/Info

Title:
One-Dimensional Hydrodynamic Model for Dam-Break Flooding
文章编号:
1008-2786-(2024)1-123-9
作者:
吕佳豪侯精明*李东来荆海晓陈光照
(西安理工大学 西北旱区生态水利国家重点实验室,西安 710048)
Author(s):
LYU Jiahao HOU Jingming* LI Donglai JING Haixiao CHEN Guangzhao
(State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China)
关键词:
河道水动力模型 Godunov格式 明渠水流运动过程 复杂断面处理 溃坝洪水
Keywords:
river hydrodynamic model Godunov scheme open-channel flow complex cross-sections dam-break flooding
分类号:
TV 133.2
DOI:
10.16089/j.cnki.1008-2786.000809
文献标志码:
A
摘要:
中国是受洪水灾害影响最严重的国家之一。洪水数值模型可准确地反映洪水的演进与致灾过程。本研究针对天然河道洪水过程存在的尺度大、水流流态复杂、河道断面形式多变以及计算建模困难等问题,提出一套基于Godunov格式的有限体积法离散圣维南方程组的一维水动力模型,并采用求解复杂断面水力要素之间关系的方法,提高了一维水动力模型求解的精度与效率,精确地反映了复杂断面河道的水流运动特性。将模型模拟得到的数值解与算例中的解析解或实测数据进行对比,结果表明:(1)构建的一维水动力模型模拟结果与理想算例解析解及实验实测数据吻合程度均较高,所有算例的ENS均大于0.5,说明模型具有良好的稳定性和适应性;(2)将模型应用至金沙江白格堰塞湖溃坝洪水算例中,模拟得到的流量峰值及整体洪水过程均与实测过程吻合较好,在叶巴滩和苏洼龙两个测点处ENS分别为0.633和0.812,证明了模型在实际应用中的适用性与可靠性。结果表明,开发的一维水动力模型对溃坝洪水等水流流态复杂、突发性强的洪水过程具有良好的模拟效果。本研究可为河道及溃坝洪水风险的初步、快速评估等工作提供有效的模拟支撑。
Abstract:
China is one of the countries severely affected by floods. Numerical modelling of flooding can accurately reflect the flood evolution and disaster-causing process.
In this study, a set of one-dimensional hydrodynamic model based on the finite volume method to discretize Saint-Venant equation set in Godunov format was proposed to address the issues of modeling of flooding in natural rivers characterized by large scale, complex flow regimes, variable channel cross-section forms; it employed a method for solving the relationships between hydraulic elements of arbitrarily complex cross-sections, which accurately provided values of hydraulic elements for any complex channel cross-section during model solving.
(1)All cases had ENS values greater than 0.5, demonstrating the model's good stability and adaptability. By comparison the analytical solutions obtained by the model with solutions from classical ideal cases, experimental cases, and actual engineering cases, as well as measured data, this model improved the accuracy and efficiency of one-dimensional hydrodynamic model solving, effectively reflecting the characteristics in open-channel flow with complex cross-sections.
(2)Applying this model to an actual example of dam-break flooding at the Baige Dam on the Jinshajing River, the simulated peak floods and overall flood processes closely match observations. ENS values at the two measurement sites, Yebatan and Suwalong were 0.633 and 0.812, respectively, convincing the applicability and reliability of the model in practical applications.
The proposed one-dimensional hydrodynamic model exhibited excellent simulation effectiveness in flooding with complex flow conditions and high suddenness. This study provides an efficient simulation for preliminary or rapid assessment of dam-break flooding risks.

参考文献/References:

[1] 郭良, 丁留谦, 孙东亚, 等. 中国山洪灾害防御关键技术[J]. 水利学报, 2018, 49(9): 1123-1136.[GUO Liang, DING Liuqian, SUN Dongya, et al. Key techniques of flash flood disaster prevention in China[J]. Journal of Hydraulic Engineering, 2018, 49(9): 1123-1136]DOI: 10.13243/j.cnki.slxb.20180728
[2] 郭良, 张晓蕾, 刘荣华, 等. 全国山洪灾害调查评价成果及规律初探[J]. 地球信息科学学报, 2017, 19(12): 1548-1556.[GUO Liang, ZHANG Xiaolei, LIU Ronghua, et al. Achievements and preliminary analysis on China national flash flood disasters investigation and evaluation[J]. Journal of Geo-information Science, 2017, 19(12): 1548-1556]DOI: 10.3724/SP.J.1047.2017.01548
[3] 熊俊楠, 李进, 程维明, 等. 西南地区山洪灾害时空分布特征及其影响因素[J]. 地理学报, 2019, 74(7): 1374-1391.[XIONG Junnan, LI Jin, CHENG Weiming, et al. Spatial-temporal distribution and the influencing factors of mountain flood disaster in southwest China[J]. Acta Geographica Sinica, 2019, 74(7): 1374-1391]DOI: 10.11821/dlxb201907008
[4] 吴杰, 陈冠, 孟兴民, 等. 白龙江流域滑坡降雨临界值[J]. 山地学报, 2022, 40(6): 875-886.[WU Jie, CHEN Guan, MENG Xingmin, et al. Rainfall threshold of landslides in the Bailong River basin, China[J]. Mountain Research, 2022, 40(6): 875-886] DOI: 10.16089/j.cnki.1008-2786.000720
[5] LI Bingyao, HOU Jingming, LI Donglai, et al. Application of LiDAR UAV for high-resolution flood modelling[J]. Water Resources Management, 2021, 35: 1433-1447. DOI: 10.1007/s11269-021-02783-w
[6] 曹保前. 蓝田县灞河“2021·8·19”暴雨洪水分析[J]. 陕西水利, 2022(11): 77-78+83.[CAO Baoqian. Analysis of the August 19, 2021 rainstorm and flood in Bahe River, Lantian district[J]. Shaanxi Water Resources, 2022(11): 77-78+83] DOI: 10.16747/j.cnki.cn61-1109/tv.2022.11.024
[7] 孙万光, 杨海滔, 杨斌斌, 等. 基于HLLC近似Riemann求解器的天然河道水流运动模拟[J]. 中国农村水利水电, 2022(2): 12-19.[SUN Wanguang, YANG Haitao, YANG Binbin, et al. Simulation of natural river flow based on HLLC approximate riemann solver[J]. China Rural Water and Hydropower, 2022(2): 12-19]DOI: 10.3969/j.issn.1007-2284.2022.02.003
[8] 杨程, 吕岁菊, 李春光, 等. 基于非结构网格的三维水流数值模拟研究[J]. 西北农林科技大学学报(自然科学版), 2017, 45(11): 147-154.[YANG Cheng, LYU Suiju, LI Chunguang, et al. Numerical simulation of three dimensional flow based on unstructured grids[J]. Journal of Northwest Agriculture and Forestry University(Natural Science Edition), 2017, 45(11): 147-154] DOI: 10.13207/j.cnki.jnwafu.2017.11.019
[9] 姜晓明, 李丹勋, 王兴奎. 基于黎曼近似解的溃堤洪水一维-二维耦合数学模型[J]. 水科学进展, 2012, 23(2): 214-221.[JIANG Xiaoming, LI Danxun, WANG Xingkui. Coupled one-and two-dimensional numerical modeling of levee-breach flows using the Godunov method[J]. Advances in Water Science, 2012, 23(2): 214-221] DOI: 10.14042/j.cnki.32.1309.2012.02.006
[10] 蒋先刚, 刘维明, 文宿菘, 等. 基于HEC-RAS模型的雅江中游古高能洪水的模拟研究[J]. 山地学报, 2022, 40(2): 276-288.[JIANG Xiangang, LIU Weiming, WEN Susong, et al. Simulation of ancient high-energy flood in the middle reaches of the Yarlung Zangbo River based on HEC-RAS model[J]. Mountain Research, 2022, 40(2): 276-288] DOI: 10.16089/j.cnki.1008-2786.000671
[11] 郭立兵, 王亚东, 田福昌. 基于一维水动力模型分析涉水建筑对河道行洪能力的影响[J]. 南水北调与水利科技, 2017, 15(6): 165-171.[GUO Libing, WANG Yadong, TIAN Fuchang. Effect of water-related structures on flood discharge capacity of river based on one-dimensional hydrodynamic model[J]. South-to-North Water Transfers and Water Science and Technology, 2017, 15(6): 165-171] DOI: 10.13476/j.cnki.nsbdqk.2017.06.024
[12] 马海波, 董晓华, 王伟. 基于有限差分法的扩散波沿程洪峰衰减值确定方法研究[J]. 水电能源科学, 2014, 32(9): 75-77.[MA Haibo, DONG Xiaohua, WANG Wei, et al. Research on peak discharge attenuation value determination of diffusion wave along based on Finite difference method[J]. Water Resources and Power, 2014, 32(9): 75-77]
[13] 张大伟, 权锦, 马建明, 等. 应用Godunov格式模拟复杂河网明渠水流运动[J]. 应用基础与工程科学学报, 2015, 23(6): 1088-1096.[ZHANG Dawei, QUAN Jin, MA Jianming, et al. Flows simulation in complex open channel networks using Godunov method[J]. Journal of Basic Science and Engineering. 2015, 23(6): 1088-1096] DOI: 10.16058/j.issn.1005-0930.2015.06.003
[14] XIN Xiaokang, BAI Fengpeng, LI Kefeng. Numerical simulating open-channel flows with regular and irregular cross-section shapes based on Finite volume Godunov-type scheme[J]. International Journal of Computational Methods, 2020, 18: 4. DOI: 10.1142/S0219876220500474
[15] SCHIPPAL, PAVAN S. Bed evolution numerical model for rapidly varying flow in natural streams[J]. Computers and Geosciences, 2009, 35(2): 390-402. DOI: 10.1016/j.cageo.2008.08.004
[16] 张大伟, 程晓陶, 黄金池, 等. 复杂明渠水流运动的高适用性数学模型[J]. 水利学报, 2010, 41(5): 531-536.[ZHANG Dawei, CHENG Xiaotao, HUANG Jinchi, et al. Widely adaptable numerical model for complicated open channel flows[J]. Journal of Hydraulic Engineering, 2010, 41(5): 531-536] DOI: 10.13243/j.cnki.slxb.2010.05.012
[17] NUJIC' M. Efficient implementation of non-oscillatory schemes for the computation of free-surface flows[J]. Journal of Hydraulic Research, 2010, 33(1): 101-111. DOI: 10.1080/00221689509498687
[18] HOU Jingming, LIANG Qiuhua, SIMONS F, et al. A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment[J]. Advances in Water Resources, 2013, 52: 107-131. DOI: 10.1016/j.advwatres.2012.08.003
[19] SANDERSB F. High-resolution and non-oscillatory solution of the St. Venant equations in non-rectangular and non-prismatic channels[J]. Journal of Hydraulic Research, 2010, 39(3): 321-330. DOI: 10.1080/00221680109499835
[20] HUBBARD M E, GARCIA-NAVARRO P. Flux difference splitting and the balancing of source terms and flux gradients[J]. Journal of Computational Physics, 2000, 165(1): 89-125. DOI: 10.1006/jcph.2000.6603
[21] SOARES-FRAZÃO S. Experiments of dam-break wave over a triangular bottom sill[J]. Journal of Hydraulic Research, 2010, 45(Sup1): 19-26. DOI: 10.1080/00221686.2007.9521829
[22] 刘青, 王伟, 高星, 等. 大型滑坡坝溃决对下游河谷坡岸的影响分析——以白格滑坡下游50 km内的河谷边坡为例[J]. 山地学报, 2021, 39(2): 226-237.[LIU Qing, WANG Wei, GAO Xing, et al. Analysis of the effects of dammed lake outburst floods on geomorphology of river basin: A case study of the valley slope erosion within 50 km downstream of Baige landslide, Tibet, China[J]. Mountain Research, 2021, 39(2): 226-237] DOI: 10.16089/j.cnki.1008-2786.000590
[23] HOU Jingming, MA Yongyong, WANG Tian, et al. A river channel terrain reconstruction method for flood simulations based on coarse DEMs[J]. Environmental Modelling and Software, 2021, 140: 105035. DOI: 10.1016/j.envsoft.2021.105035
[24] 马利平, 侯精明, 张大伟, 等. 耦合溃口演变的二维洪水演进数值模型研究[J]. 水利学报, 2019, 50(10): 1253-1267.[MA Liping, HOU Jingming, ZHANG Dawei, et al. Study on 2-D numerical simulation coupling with breach evolution in flood propagation[J]. Journal of Hydraulic Engineering, 2019, 50(10): 1253-1267] DOI: 10.13243/j.cnki.slxb.20190462
[25] 陈祖煜, 张强, 侯精明, 等. 金沙江“10·10”白格堰塞湖溃坝洪水反演分析[J]. 人民长江, 2019, 50(5): 1-4+19.[CHEN Zuyu, ZHANG Qiang, HOU Jingming, et al. Back analysis on dam-breach flood of “10.10” Baige barrier lake on Jinsha River[J]. Yangtze River, 2019, 50(5): 1-4+19] DOI: 10.16232/j.cnki.1001-4179.2019.05.001

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 03-16; 改回日期(Accepted data):2023-10-11
基金项目(Foundation item): 国家自然科学基金(52079106); 中德科学基金交流中心项目(M-0427); 陕西省创新能力支撑计划-创新人才推进计划(2020TD-023)。[National Natural Science Foundation of China(52079106); Chinesisch-Deutsches Mobilitatsprogramm(M-0427); Innovation Capability Support Program of Shaanxi(2020TD-023)]
作者简介(Biography): 吕佳豪(1999-),男,陕西西安人,博士研究生,主要研究方向:水动力模型开发。[LYU Jiahao(1999-), male, born in Xi'an, Shaanxi province, Ph.D. candidate, research on hydrodynamic model] E-mail:1210412033@stu.xaut.edu.cn
*通讯作者(Corresponding author): 侯精明(1982-),男,博士,教授,主要研究方向:地表水动力及其附随过程数值模型。[HOU Jingming(1982-), male, Ph.D., professor, research on numerical simulation of surface hydrodynamic and its accompanying process] E-mail:jingming.hou@xaut.edu.cn
更新日期/Last Update: 2024-01-30