[1]王 信,郭富赟*,张 娟,等.基于滑坡动力学过程的甘肃舟曲磨里滑坡风险评价[J].山地学报,2025,(1):105-121.[doi:10.16089/j.cnki.1008-2786.000879]
 WANG Xin,GUO Fuyun*,ZHANG Juan,et al.A Dynamic Process-Based Risk Assessment of a Resurgent Landslide at Moli Village in Zhouqu County, Gansu Province, China[J].Mountain Research,2025,(1):105-121.[doi:10.16089/j.cnki.1008-2786.000879]
点击复制

基于滑坡动力学过程的甘肃舟曲磨里滑坡风险评价()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第1期
页码:
105-121
栏目:
山地灾害
出版日期:
2025-02-20

文章信息/Info

Title:
A Dynamic Process-Based Risk Assessment of a Resurgent Landslide at Moli Village in Zhouqu County, Gansu Province, China
文章编号:
1008-2786-(20251-105-17)
作者:
王 信1郭富赟1*张 娟1窦晓东1张 毅2冯自明3
(1.甘肃省地质环境监测院,兰州 730000; 2.兰州大学 地质科学与矿产资源学院,兰州 730000; 3.甘肃省地质矿产勘查开发局 第一地质矿产勘查院,甘肃 天水 741020)
Author(s):
WANG Xin1 GUO Fuyun1* ZHANG Juan1 DOU Xiaodong1 ZHANG Yi2 FENG Ziming3
(1. Gansu Provincial Institute for Geo-Environment Monitoring, Lanzhou 730000, China; 2.School of Earth Sciences, Lanzhou University, Lanzhou 730000, China; 3.First Geology and Mineral Exploration Institute, Gansu Provincial Bureau of Geology and Mineral Exploration and Development, Tianshui 741020,Gansu, China)
关键词:
磨里滑坡 动力过程 数值模拟 风险评估
Keywords:
the Moli landslide dynamic process numerical simulation risk assessment
分类号:
X43
DOI:
10.16089/j.cnki.1008-2786.000879
文献标志码:
A
摘要:
甘肃舟曲县果耶镇磨里滑坡位于青藏高原东北缘断裂构造带破碎岩土区。受区域地震及持续极端降雨耦合作用的影响,磨里滑坡于2021年发生渐进式复活变形,严重威胁果耶村、磨里村居民的生命财产安全,存在重大灾害风险。本文在现场调查、原位监测的基础上,采用连续介质力学模型模拟分析该滑坡复活变形和极端条件下失稳破坏的动力过程,并基于滑坡堆积体最大淤埋深度和最大冲击动量等典型滑坡破坏特征值,开展了极端条件下磨里滑坡灾害风险预测评价。调查发现:(1)磨里滑坡属于典型特大超深层断层破碎岩滑坡,其复活主控因素为长历时降雨入渗导致的岩体强度劣化。(2)动力过程数值模拟表明,磨里滑坡变形呈现出牵引式变形特征,极端条件下滑坡失稳破坏兼有推移式、牵引式复合变形特点:变形过程可以分为0~50 s的局部滑动阶段和50 s之后整体蠕滑变形两个阶段; 滑动后0~150 s为强烈变形阶段,表现出推移式变形的特点,150 s之后为缓慢变形阶段,以牵引式变形为主。滑坡堆积体在滑动后40 s时刻将堵断滑坡前缘大水坝沟,堰塞体厚度最大可达28.3 m。(3)风险区划显示高风险区(20.4%)、中风险区(70.3%)与低风险区(9.3%)呈斑块分布,主要位于滑坡体前缘部位。本研究成果可以为磨里滑坡应急治理提供动态决策基准,也可为类似地区典型特大型滑坡风险防控提供可推广的方法框架。
Abstract:
The landslide occuring at Moli Village in Guoye Town, Zhouqu County, Gansu Province, China is located in fractured rock-soil area of the fault belt on the northeast margin of the Qinghai-Tibet Plateau. Influenced by sustained extreme rainfall with regional earthquakes, the Moli landslide underwent progressive deformation with obvious trend of reactivation in 2021, posing a severe threat to the lives and property of residents in Moli villages and its surrounding areas.
In this paper, it conducted field investigations and in-situ monitoring on the Moli landslide deformation, followed by introducing a continuum mechanics model to predict the dynamic process of the landslide's resurgent deformation, and failure in case of extreme excitation conditions. Then it evaluated its failure risk and zoning by inclusion of some key landslide failure eigenvalues in a risk model, such as the maximum burial depth and the maximum impact momentum of the landslide deposit.
(1)The investigation revealed that the Moli landslide was a typical extra-large and ultra-deep landslide in fault fracture zone, with primary controlling factor for its reactivation being the deterioration of rock mass strength due to diachronic rainfall infiltration.
(2)By numerical simulations of the dynamic process, it suggested that the Moli landslide generally described a retrogressive deformation pattern; however, at the critical point of failure it behaved in a way of simultaneous retrogressive and slumping motions. The deformation process can be divided into two stages: a local sliding stage from 0 to 50 seconds and an overall creep deformation stage thereafter. The period from 0 to 150 seconds after sliding represented a stage of intense deformation, characterized by slumping deformation, followed by a slow deformation stage dominated by retrogressive deformation after 150 seconds. The landslide deposit would block the Dashuiba Gully at the toe of the landslide 40 seconds after sliding, with the maximum thickness of the dammed body reaching 28.3 meters.
(3)In the risk zoning, high-risk areas(20.4%), medium-risk areas(70.3%), and low-risk areas(9.3%)were distributed in patches, mainly located at the front of the landslide body.
This finding provides a dynamic decision-making benchmark for emergency management of the Moli landslide and also offers a generalizable methodological framework for risk prevention and control of typical giant landslides in similar regions.

参考文献/References:

[1] DAI F C, LEE C F, NGAI Y Y. Landslide risk assessment and management: An overview [J]. Engineering Geology, 2002, 64(1): 65-87. DOI: 10.1016/S0013-7952(01)00093-X
[2] FELL R, HO K K S, LACASSE S, et al. A framework for landslide risk assessment and management [C]//HUNGR O R F, et al. Landslide risk management. London: Taylor and Francis, 2005: 3-26
[3] CASCINI L, BONNARD C, COROMINAS J, et al. Landslide hazard and risk zoning for urban planning and development [C]// HUNGR O R F, et al. Landslide risk management. London: Taylor and Francis, 2005: 199-235
[4] 石菊松, 石玲, 吴树仁. 滑坡风险评估的难点和进展[J]. 地质论评, 2007, 53(6): 797-806. [SHI Jusong, SHI Ling, WU Shuren. Difficulties and problematical aspects of landslide risk assessment: An overview [J]. Geological Review, 2007, 53(6): 797-806] DOI: 10.16509/j.georeview.2007.06.018
[5] 唐亚明, 张茂省. 滑坡风险评价难点及方法综述[J]. 水文地质工程地质, 2011, 38(2): 130-134+138. [TANG Yaming, ZHANG Maosheng. Landslide risk assessment difficulties and methods: An review [J]. Hydrogeology & Engineering Geology, 2011, 38(2): 130-134+138] DOI: 10.16030/j.cnki.issn.1000-3665.2011.02.004
[6] 吴树仁, 石菊松, 张春山, 等. 地质灾害风险评估技术指南初论[J]. 地质通报, 2009, 28(8): 995-1005. [WU Shuren, SHI Jusong, ZHANG Chunshan, et al. Preliminary discussion on technical guideline for geohazard risk assessment [J]. Geological Bulletin of China, 2009, 28(8): 995-1005] DOI: 10.3969/j.issn.1671-2552.2009.08.001
[7] 唐亚明, 张茂省, 薛强. 陕西延安市虎头峁滑坡社会风险评价[J]. 地质通报, 2008, 27(11): 1782-1786. [TANG Yaming, ZHANG Maosheng, XUE Qiang. Social risk assessments of the Hutoumao landslide in Xi'an City, Shaanxi, China [J]. Geological Bulletin of China, 2008, 27(11): 1782-1786] DOI: 10.3969/j.issn.1671-2552.2008.11.004
[8] 潘孝城, 聂荣孙, 罗浩洋. 基于模糊综合评价法的单体滑坡风险评价[J]. 土工基础, 2018, 32(3): 330-334. [PAN Xiaocheng, NIE Rongsun, LUO Haoyang. Application of fuzzy comprehensive evaluation in the risk assessment of single landslide [J]. Soil Engineering and Foundation, 2018, 32(3): 330-334] DOI: CNKI:SUN:TGJC.0.2018-03-022
[9] WANG Dongpo, LI Yizhi, WANG Zhongwen, et al. Threat from above! Assessing the risk from the Tonghua high-locality landslide in Sichuan, China [J]. Landslides, 2022, 19(3): 731-746. DOI: 10.1007/s10346-021-01836-w
[10] United Nations Office for Disaster Risk Reduction. Sendai framework for disaster risk reduction 2015-2030 [C]//Proceedings of the 3rd United Nations World Conference on Disaster Risk Reduction. Sendai, Japan, 14-18 March 2015
[11] CLEARY P W, PRAKASH M. Discrete-element modelling and smoothed particle hydrodynamics: Potential in the environmental sciences [J]. Philosophical Transactions Royal Society of London Series A–Mathematical, 2004, 362: 2003-2030. DOI: 10.1098/rsta.2004.1428
[12] OUYANG Chaojun, ZHAO Wei, AN Huicong, et al. Early identification and dynamic processes of ridge-top rockslides: Implications from the Su Village landslide in Suichang County, Zhejiang Province, China [J]. Landslides, 2019, 16(4): 799-813. DOI: 10.1007/s10346-018-01128-w
[13] OUYANG Chaojun, WANG Zhongwen, AN Huicong, et al. An example of a hazard and risk assessment for debris flows: A case study of Niwan Gully, Wudu, China [J]. Engineering Geology, 2019, 263: 1-42. DOI: 10.1016/j.enggeo.2019.105351
[14] OUYANG Chaojun, ZHOU Kaiqi, XU Qiang, et al. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China [J]. Landslides, 2017, 14(2): 1-14. DOI: 10.1007/s10346-016-0764-9
[15] 张毅. 基于InSAR技术的地表变形监测与滑坡早期识别研究—以白龙江流域中游为例[D]. 兰州: 兰州大学, 2018: 1-130. [ZHANG Yi. Detecting ground deformation and investigating landslides using InSAR technique-taking middle reach of Bailong River Basin as an example [D]. Lanzhou: Lanzhou University, 2018: 1-130]
[16] ZHANG Yi, MENG Xingmin, JORDAN C, et al. Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series [J]. Landslides, 2018, 15(7): 1299-1315. DOI: 10.1007/s10346-018-0954-8
[17] 郭长宝, 任三绍, 李雪, 等. 甘肃舟曲南峪江顶崖古滑坡发育特征与复活机理[J]. 现代地质, 2019, 33(1): 206-217. [GUO Changbao, REN Sanshao, LI Xue, et al. Development characteristics and reactivation mechanism of the Jiangdingya ancient landslide in the Nanyu Town, Zhouqu County, Gansu Province [J]. Geoscience, 2019, 33(1): 206-217] DOI: 10.19657/j.geoscience.1000-8527.2019.01.20
[18] 吴玮江, 王国亚, 刘兴荣, 等. 甘肃舟曲县牙豁口滑坡发育特征与成因分析[J]. 冰川冻土, 2021, 43(2): 544-554. [WU Weiiang, WANG Guoya, LIU Xingrong, et al. The development characteristics and causes of the Yahuokou landslide in Zhouqu County, Gansu Province [J]. Journal of Glaciology and Geocryology, 2021, 43(2): 544-554] DOI: 10.7522/j.issn.1000-0240. 2021.0019
[19] 黎志恒, 文宝萍, 贾贵义, 等. 甘肃省白龙江流域滑坡分布规律及其主控因素[J]. 兰州大学学报(自然科学版), 2015, 51(6): 768-776. [LI Zhiheng, WEN Baoping, JIA Guiyi, et al. Characteristics of the landslide distribution along the Bailongjiang river basin and its controlling factors [J]. Journal of Lanzhou University(Natural Sciences), 2015, 51(6): 768-776] DOI: 10.13885/j.issn.0455-2059.2015.06.002
[20] ZHAO Yan, MENG Xingmin, QI Tianjun, et al. AI-based identification of low-frequency debris flow catchments in the Bailong River Basin, China [J]. Geomorphology, 2020, 359: 107125. DOI: 10.1016/j.geomorph.2020.107125
[21] 徐彩仙, 巩杰, 李焱, 等. 基于地形梯度的甘肃白龙江流域典型生态系统服务分布特征[J]. 生态学报, 2020, 40(13): 4291-4301. [XU Caixia, GONG Jie, LI Yan, et al. Spatial distribution characteristics of typical ecosystem services based on terrain gradients of Bailongjiang Watershed in Gansu [J]. Acta Ecologica Sinica, 2020, 40(13): 4291-4301] DOI: 10.5846/stxb201911152447
[22] 黄晓, 杨为民, 张春山, 等. 甘肃南部坪定-化马断裂带锁儿头滑坡成因机制[J]. 地质通报, 2013, 32(12): 1936-1942. [HUANG Xiao, YANG Weimin, ZHANG Chunshan, et al. The formation mechanism of Suoertou landslide in Pingding-Huama fault zone, Southern Gansu [J]. Geological Bulletin of China, 2013, 32(12): 1936-1942] DOI: 10.3969/j.issn.1671-2552.2013.12.007
[23] 郭富赟, 王信, 吴正军, 等. 舟曲磨里巨型滑坡基本特征及破坏模式[J]. 山地学报, 2022, 40(4): 557-569. [GUO Fuyun, WANG Xin, WU Zhengjun, et al. Characteristics and failure mode of giant Moli landslide in Zhouqu County, Gansu Province, China [J]. Mountain Research, 2022, 40(4): 557-569] DOI: 10.16089/j.cnki.1008-2786.000693
[24] CUI Peng, ZOU Qiang, XIANG Lingzhi, et al. Risk assessment of simultaneous debris flows in mountain townships [J]. Progress in Physical Geography, 2013, 37(4): 516-542. DOI: 10.1177/0309133313491445

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 03-18; 改回日期(Accepted date):2025- 02-15
基金项目(Foundation item): 中央引导地方科技发展资金项目(23ZYQA0326 )。 [Central Guiding Funds for Local Science and Technology Development(23ZYQA0326)]
作者简介(Biography): 王信(1989-),男,甘肃会宁人,本科, 高级工程师,主要研究方向:地质灾害防灾减灾。[WANG Xin(1989-), male, born in Huining, Gansu Province, B.S., senior engineer, research on geological disaster prevention and reduction] E-mail: 1285740995@qq.com
*通讯作者(Corresponding author): 郭富赟(1970-),男,博士,正高级工程师,主要研究方向:地质灾害防灾减灾。[GUO Fuyun(1970-), male, Ph.D, professor of engineer, research on geological disaster prevention and reduction] E-mail: fyg51913@163.com
更新日期/Last Update: 2025-01-30