[1]匡 萱,余 斌*,陈 龙,等.基于无人机测量的泥石流固体颗粒图像识别与泥石流预警[J].山地学报,2023,(5):733-747.[doi:10.16089/j.cnki.1008-2786.000783]
 KUANG Xuan,YU Bin*,CHEN Long,et al.Recognition of Geo-Materials Composition by UAV Measurements and Its Application to Early Warning of Debris Flow[J].Mountain Research,2023,(5):733-747.[doi:10.16089/j.cnki.1008-2786.000783]
点击复制

基于无人机测量的泥石流固体颗粒图像识别与泥石流预警
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第5期
页码:
733-747
栏目:
山地灾害
出版日期:
2023-11-15

文章信息/Info

Title:
Recognition of Geo-Materials Composition by UAV Measurements and Its Application to Early Warning of Debris Flow
文章编号:
1008-2786-(2023)5-733-15
作者:
匡 萱余 斌*陈 龙董秀军
(成都理工大学 地质灾害防治与地质环境保护国家重点实验室,成都 610059)
Author(s):
KUANG Xuan YU Bin* CHEN Long DONG Xiujun
(State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China)
关键词:
泸定9·5地震 无人机测量 PCAS软件 粒径
Keywords:
the Luding “9.5” earthquake UAVs observation PCAS software particle size
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000783
文献标志码:
A
摘要:
强震导致崩塌与滑坡碎屑物在泥石流流域内广泛堆积,挤压侵占天然沟道,完全改变了沟床物源级配构成,泥石流激发降雨临界值急剧降低。震后泥石流物源粒径和沟道宽度的变化直接改变了震后泥石流启动过程及机制。泥石流预警模型并未考虑震后泥石流物源组成的动态变化作为主控因素,需要进一步改进。本文现场调查了泸定9·5地震后泥石流沟的形成区及流通堆积区松散堆积物组成,采用无人机航测采集岩土粒径,结合PCAS软件进行泥石流粒径识别,分别通过系统误差、高度误差及坡度误差三个方面进行误差分析,探讨无人机航测泥石流形成区沟道粒径方法的准确性; 对泸定大渡河流域得妥乡内的洛进沟和两岔河沟进行粒径测量,结合泥石流1 h预报模型和改进的精细化泥石流1 h预报模型,得到这两条沟震前震后的综合降雨临界值,发现强震后泥石流流域颗粒粒径明显减小,两条泥石流沟的激发临界降雨量都大幅降低; 通过误差分析,得到无人机近地观测结合软件测量研究区域内泥石流沟道形成区物源粒径的方法与人工现场测量之间的误差较小,可以用于泥石流物源粒径识别,且由于强震后泥石流的激发降雨临界值是一个动态变化过程,采用无人机可以高效识别泥石流沟道物源的变化。
Abstract:
Strong earthquakes lead to extensive accumulation of debris from rockfalls and landslides in debris flow basins, followingly which squeezes and encroaches on natural debris flow gully, completely changing the composition of geo-materials on gully bed, and sharply reducing the threshold of debris flow initiation induced by rainfall. Changes in grain sizes and channel widths in post-earthquake gullies directly altered the process and mechanism of post-earthquake debris flow motivation; however, available debris flow warning models did not interpret the dynamic changes in the composition of geo-source of debris flow as a main control factor, which needs to be improved and justified.
In this study, debris flow gullies in the post-shock areas of the Sichuan Luding Earthquake on September 5 of 2022 were surveyed in their section of forming, transporting and accumulating debris flow; unmanned aerial vehicles(UAVs)were used to photograph geo-materials, followed by PCAS software to be used to identify particle sizes by image recognition; the accuracy of the UAV approach to measurement of grain size in the forming section was addressed through three aspects of error analysis of systematic error, height error and slope error, respectively.
The geo-materials in the Luojin gully and the Liangchahe gully at Detuo town in the Daduhe River basin of Luding county, Sichuan province of China was remotely photographed and then interpreted for image recognition for cases study; the comprehensive rainfall threshold for pre-shock debris flow as well as post-shock debris flow in the two gullies were estimated by combination of 1-hour prediction model of debris flow and a refined 1-hour prediction model. It was found that the particle size in the two gullies decreased evidently after the shock, along with significant decreases in rainfall thresholds.
By error analysis, it was obtained that the UAV approach of near-earth observation combined with software to determine the particle sizes of geo-materials in the source areas of debris flow gullies had minor deviations as compared with in-situ measurement, justifying the applicability of the UAV approach; moreover, since the rainfall threshold of post-shock debris flow exhibited a dynamic change, using UAV approach in any field survey to collect geo-material information is a matter of time-saving and efficiency.

参考文献/References:

[1] 范宣梅, 王欣, 戴岚欣, 等. 2022年MS6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报, 2022, 30(5): 1504-1516. [FAN Xuanmei, WANG Xin, DAI Lanxin, et al. Characteristics and spatial distribution pattern of MS6.8 Luding Earthquake occurred on September 5, 2022 [J]. Journal of Engineering Geology, 2022, 30(5): 1504-1516] DOI: 10.13544/j.cnki.jeg.2022-0665
[2] 颜照坤, 李勇, 黄润秋, 等. 汶川MS8.0地震驱动的同震及震后地质灾害空间分布[J]. 四川地震, 2011(4): 1-7. [YAN Zhaokun, LI Yong, HUANG Runqiu, et al. The spatial distribution of coseismal geological disasters triggered by the 2008 Wenchuan MS8.0 Earthquake [J]. Earthquake Research in Sichuan, 2011(4): 1-7]
[3] 唐川, 梁京涛. 汶川震区北川9.24暴雨泥石流特征研究[J]. 工程地质学报, 2008, 16(6): 751-758. [TANG Chuan, LIANG Jingtao. Characteristics of debris flows in Beichuan epicenter of the Wenchuan Earthquake triggered by rainstorm on September 24, 2008 [J]. Journal of Engineering Geology, 2008, 16(6): 751-758]
[4] 许强. 四川省8·13特大泥石流灾害特点、成因与启示[J]. 工程地质学报, 2010, 18(5): 596-608. [XU Qiang. The 13 August 2010 catastrophic debris flows in Sichuan province: Characteristics, genetic mechanism and suggestions [J]. Journal of Engineering Geology, 2010, 18(5): 596-608]
[5] SHIEH C L, CHEN Y S, TSAI Y J. Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan, China [J]. International Journal of Sediment Research, 2009, 24(2): 177-188.
[6] ZHANG S, ZHANG L M. Impact of the 2008 Wenchuan earthquake in China on subsequent long-term debris flow activities in the epicentral area [J]. Geomorphology, 2017, 276: 86-103. DOI: 10.1016/j.geomorph.2016.10.009
[7] YU Bin, WU Yufu, CHU Shengming. Preliminary study of the effect of earthquakes on the rainfall threshold of debris flows [J]. Engineering Geology, 2014, 182: 130-135. DOI: 10.1016/j.enggeo.2014.04.007
[8] 余斌, 朱渊, 王涛, 等. 沟床起动型泥石流预报研究[J]. 工程地质学报, 2014, 22(3): 450-455. [YU Bin, ZHU Yuan, WANG Tao, et al. Prediction model for occurrence of debris flow in channels with runoff initiation mechanism [J]. Journal of Engineering Geology, 2014, 22(3): 450-455] DOI: 10.13544/j.cnki.jeg.2014.03.014
[9] 余斌, 朱渊, 王涛, 等. 沟床起动型泥石流的10 min降雨预报模型[J]. 水科学进展, 2015, 26(3): 347-355. [YU Bin, ZHU Yuan, WANG Tao, et al. Research on the 10-minute rainfall prediction model for debris flows [J]. Advances in Water Science, 2015, 26(3): 347-355] DOI: 10.14042 /j.cnki.32.1309.2015.03.006
[10] 余斌, 杨凌崴, 刘清华, 等. 基于沟床宽度与颗粒粒径的泥石流精细化预报模型[J]. 地球科学, 2020, 45(4): 1447-1456. [YU Bin, YANG Lingwei, LIU Qinghua, et al. A precise prediction model on debris flows caused by runoff mechanism based on channel width and particle size [J]. Earth Science, 2020, 45(4): 1447-1456] DOI: 10.3799/dqkx.2019.131
[11] 赵岩, 郑娇玉, 郭鹏, 等. ImageJ软件在泥石流固体颗粒分析中的应用[J]. 兰州大学学报(自然科学版), 2015, 51(6): 877-881. [ZHAO Yan, ZHENG Jiaoyu, GUO Peng, et al. Applications of the ImageJ software in analysis of solid grains in a debris flow gully [J]. Journal of Lanzhou University(Natural Sciences), 2015, 51(6): 877-881] DOI: 10.13885/j.issn.0455-2059.2015.06.020
[12] 彭双麒, 许强, 李骅锦, 等. 基于高精度图像识别的堆积体粒径分析[J]. 工程地质学报, 2019, 27(6): 1290-1301. [PENG Shuangqi, XU Qiang, LI Huajin, et al. Grain size distribution analysis of landslide deposits with reliable image identification [J]. Journal of Engineering Geology, 2019, 27(6): 1290-1301] DOI: 10.13544/j.cnki.jeg.2018-305
[13] 彭双麒, 许强, 郑光, 等. 白格滑坡-碎屑流堆积体颗粒识别与分析[J]. 水利水电技术, 2020, 51(2): 144-154. [PENG Shuangqi, XU Qiang, ZHENG Guang, et al. Recognition and analysis of deposit body grain of Baige landslide-debris flow [J]. Water Resources and Hydropower Engineering, 2020, 51(2): 144-154] DOI:10.13928/j.cnki.wrahe.2020.02.017
[14] 刘朋恩, 刘文连, 许汉华, 等. 基于SEM及PCAS的白云岩溶蚀孔隙结构量化评价研究[J]. 地质灾害与环境保护, 2023, 34(1): 59-63. [LIU Peng'en, LIU Wenlian, XU Hanhua, et al. Quantitative evaluation of dolomite dissolution pore structure based on SEM and PCAS [J]. Journal of Geological Hazards and Environment Preservation, 2023, 34(1): 59-63]
[15] 徐今星, 杨根兰, 梁风, 等. 崩积体粒径的图像识别与分析[J]. 科学技术与工程, 2021, 21(26): 11084-11093. [XU Jinxing, YANG Genlan, LIANG Feng, et al. Image recognition and analysis of the particle size of collapsed deposits [J]. Science Technology and Engineering, 2021, 21(26): 11084-11093]
[16] 闫高原, 韦重韬, 宋昱, 等. 基于Ar-SEM及PCAS页岩孔隙结构定量表征[J]. 地球科学, 2018, 43(5): 1602-1610. [YAN Gaoyuan, WEI Chongtao, SONG Yu, et al. Quantitative characterization of shale pore structure based on Ar-SEM and PCAS [J]. Earth Science, 2018, 43(5): 1602-1610] DOI: 10.3799/dqkx.2017.525
[17] 张佳佳, 陈龙, 李元灵, 等. 2022年9月5日泸定MS6.8地震的同震地质灾害发育特征及主控因素分析[J]. 地震学报, 2023, 45(2): 167-178. [ZHANG Jiajia, CHEN Long, LI Yuanling, et al. Development characteristics and controlling factors of co-seismic geo-hazards triggered by the Luding MS6.8 earthquake on September 5, 2022 [J]. Acta Seismologica Sinica, 2023, 45(2): 167-178] DOI:10.11939/jass.20220215
[18] LIU Xuemei, SU Pengcheng, LI Yong, et al. Spatial distribution of landslide shape induced by Luding Ms6.8 earthquake, Sichuan, China: Case study of the Moxi Town [J]. Landslides, 2023, 20: 1667-1678. DOI: 10.1007/s10346-023-02070-2
[19] 彭桂花. 基于无人机航空摄影测量DOM制作质量控制[J]. 测绘与空间地理信息, 2022, 45(9): 195-197. [PENG Guihua. Quality control of orthophoto production based on UAV aerial photogrammetry [J]. Geomatics and Spatial Information Technology, 2022, 45(9): 195-197]
[20] 殷俊. 基于BIM三维构件的隧道施工进度精细化管理研究[D]. 南京: 东南大学, 2020: 10. [YIN Jun. Study on lean management of tunnel construction schedule based on BIM three-dimensional components [D]. Nanjing: Southeast University, 2020: 10] DOI: 10.27014/d.cnki.gdnau.2020.002150
[21] 刘学军, 卢华兴, 仁政, 等. 论DEM地形分析中的尺度问题[J]. 地理研究, 2007, 26(3): 433-442. [LIU Xuejun, LU Huaxing, REN Zheng, et al. Scale issues in digital terrain analysis and terrain modeling [J]. Geographical Research, 2007, 26(3): 433-442]
[22] 韩林, 余斌, 鲁科. 泥石流暴发频率与其形成区块石粒径的关系[J]. 长江流域资源与环境, 2011, 20(9): 1149-1156. [HAN Lin, YU Bin, LU Ke. Relationship of frequency of debris flows and the particle size in the channel [J]. Resources and Environment in the Yangtze Basin, 2011, 20(9): 1149-1156]
[23] LIU Chun, SHI Bin, ZHOU Jian, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials [J]. Applied Clay Science, 2011, 54(1): 97-106. DOI: 10.1016/j.clay.2011.07.022
[24] 刘春, 许强, 施斌, 等. 岩石颗粒与孔隙系统数字图像识别方法及应用[J]. 岩土工程学报, 2018, 40(5): 925-931.[ LIU Chun, XU Qiang, SHI Bin, et al. Digital image recognition method of rock particle and pore system and its application [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 925-931] DOI: 10.11779/CJGE201805018
[25] GONZALEZ R C, WOODS R E. Digital image processing [M]. New Jersey: Publishing House of Electronics Industry, 2017: 31.
[26] YU Weiwei,HE Fei,XI Ping. A rapid 3D seed-filling algorithm based on scan slice [J]. Computers and Graphics, 2010, 34(4): 449-459. DOI: 10.1016/j.cag.2010.05.005
[27] 邓辉. 基于遥感和GIS的泸定县生态地质环境质量评价[D]. 成都: 成都理工大学, 2011: 10. [DENG Hui. Assessment of eco-geological environment quality in Luding based on GIS and RS [D]. Chengdu: Chengdu University of Technology, 2011: 10]
[28] 陈文鸿, 余斌, 柳清文, 等. 北京山区泥石流的单沟预报[J]. 长江科学院院报, 2023, 40(1): 94-100+115. [CHEN Wenhong, YU Bin, LIU Qingwen, et al. Forecast of single ditch debris flow in mountainous area of Beijing [J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(1): 94-100+115] DOI: 10.11988/ckyyb.20210760
[29] 沈毅, 露丹. 泸定县泥石流灾害特征及降水因子分析[J]. 高原山地气象研究, 2014, 34(2): 81-85+90. [SHEN Yi, LU Dan. Characteristics of debris flow disaster and precipitation factor analysis in Luding [J]. Plateau and Mountain Meteorological Research, 2014, 34(2): 81-85+90] DOI: 10.3969/j.issn.1674-2148·2014.2.016
[30] 王玉婕, 张丽芬, 孙晓丹, 等. 2022年四川泸定MS6.8地震近场强震动模拟[J]. 大地测量与地球动力学, 2023, 43(5): 441-446+516. [WANG Yujie, ZHANG Lifen, SUN Xiaodan, et al. Near-field strong motion simulation of the 2022 Luding MS6.8 earthquake in Sichuan province [J]. Journal of Geodesy and Geodynamics, 2023, 43(5): 441-446+516] DOI: 10.14075/j.jgg.2023.05.001

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-09-14; 改回日期(Accepted date): 2023-10-20
基金项目(Foundation item): 国家自然科学基金(U21A2032)。[National Natural Science Foundation of China(U21A2032)]
作者简介(Biography): 匡萱(2000-),女,四川广安人,硕士研究生,主要研究方向:泥石流灾害预警。[KUANG Xuan(2000-), female, born in Guang'an, Sichuan province, M.Sc. candidate, research on debris flow disaster warning]E-mail: 2820459704@qq.com
*通讯作者(Corresponding author): 余斌(1966-),男,教授,博士,主要研究方向:泥石流灾害防治。[YU Bin(1966-), male, Ph.D., professor, research on debris flow disaster prevention]E-mail: yubin08@cdut.cn
更新日期/Last Update: 2023-09-30