[1]孙金龙,段绍臻*.滚石颗粒随机碰撞模型的理论分析[J].山地学报,2020,(3):416-424.[doi:10.16089/j.cnki.1008-2786.000521]
 SUN Jinlong,DUAN Shaozhen*.Theoretical Analysis of the Random Collision Model of Rolling Stone Particle[J].Mountain Research,2020,(3):416-424.[doi:10.16089/j.cnki.1008-2786.000521]
点击复制

滚石颗粒随机碰撞模型的理论分析()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第3期
页码:
416-424
栏目:
山地灾害
出版日期:
2020-07-20

文章信息/Info

Title:
Theoretical Analysis of the Random Collision Model of Rolling Stone Particle
文章编号:
1008-2786-(2020)3-416-09
作者:
孙金龙段绍臻*
兰州理工大学 甘肃省土木工程防灾减灾重点实验室,兰州730050
Author(s):
SUN JinlongDUAN Shaozhen*
Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
滚石 碰撞 反弹速度 初始旋转 运动轨迹
Keywords:
rolling stone collision rebound velocity initial rotation motion trajectory
分类号:
P642
DOI:
10.16089/j.cnki.1008-2786.000521
文献标志码:
A
摘要:
准确预测滑坡滚石随机碰撞后的力学特性对滚石灾害预测与防治工作具有重要的意义。为了探究影响滚石—壁面碰撞过程的随机因素,本文选取了碰撞过程中4个主要影响因素(入射速度、初始旋转角速度、入射角度以及碰撞角度),建立滚石随机碰撞理论模型,基于接触理论得到滚石碰撞过程中的基本方程,进而推导出滚石碰撞后速度公式,并且结合工程算例分析了入射速度、入射角以及初始旋转角速度对滚石的反弹速度、运动轨迹以及总动能的影响。结果显示:(1)滚石颗粒入射速度、角度以及旋转角速度对碰撞过程影响显著;(2)当滚石入射速度增加时,滚石碰后水平运动距离呈线性增大,垂向最大弹跳高度和碰后总动能成幂函数型增大;(3)当滚石入射角增大时,滚石碰后水平运动距离、垂向弹跳高度均呈减小趋势,前者幅度远大于后者,碰后总动能随着入射角的增大不断减小;(4)当滚石的初始旋转由顺时针变为逆时针增大时,滚石发生回弹现象,水平运动距离不断增大,垂向最大弹跳高度逐渐减小,碰后的总动能随着初始旋转的改变先减小后增大。该随机碰撞模型可为滚石的运动轨迹以及冲击能量的预测以及滚石灾害防治提供一定的理论依据。
Abstract:
An accurate prediction of the mechanical features of the wall rolling stone particle after the random collision is vital for predicting, preventing, and managing the rockfall hazards. To study the effect of random factors of the rolling stone-wall surface collision process on the motion features of the rolling stone, we selected four primary influencing factors of the collision process(incident velocity, initial angular velocity of rotation, angle of incidence, and angle of collision). The random collision model of a rolling stone was constructed. Based on the basic equation of the rolling stone collision process obtained from the contact theory, the velocity formula after rolling stone collision was derived. Then, the effect of incident velocity, angle of incidence, and initial angular velocity of rotation on the rebound velocity, motion trajectory, and total kinetic energy of rolling stones were analyzed through an engineering example. The incident velocity, angle of incidence, and initial angular velocity of rotation of the rolling stone had a strong effect on the collision process. The horizontal distance of the rolling stone after the collision increased linearly with its incident velocity, while the vertical maximum jumping height and total kinetic energy after the collision obeyed a power law. As the incident angle of the rolling stones increased, both the distance of horizontal motion and the vertical maximum jumping height after the collision decreased. Moreover, the former amplitude drop was much higher than that of the latter. The total kinetic energy of the rolling stones declined continuously after the collision as the incident angle increased. As the clockwise direction of the rolling stone initial rotation changed to anticlockwise one, the rolling stone rebounded. The horizontal distance increased continuously, while the vertical maximum jumping height decreased gradually. The total kinetic energy after collision first decreases and then increases with the change of the initial rotation. This random collision model is instrumental in the prediction of the rolling stone motion trajectory and impact energy, as well as the control and prevention of rockfall hazards.

参考文献/References:

[1] 何思明. 滚石对防护结构的冲击压力计算[J]. 工程力学,2010,27(9):175-180. [HE Siming. Calculation of compact pressure of rock-fall on shield structures[J]. Engineering Mechanics, 2010, 27(9): 175-180]
[2] 张路青,杨志法,许兵. 滚石与滚石灾害[J]. 工程地质学报,2004,12(3):225-231. [ZHANG Luqing, YANG Zhifa, XU Bing. Rock falls and rock fall hazards[J]. Journal of Engineering Geology, 2004, 12(3): 225-231]
[3] SHEN Weigang, ZHAO Tao, DAI Feng, et al. DEM analyses of rock block shape effect on the response of rockfall impact against a soil buffering layer[J]. Engineering Geology, 2018, 249: 60-70.
[4] AGLIARDI F, CROSTA G B, FRATTINI P. Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques[J]. Natural Hazards and Earth System Science, 2009, 9(4): 1059-1073.
[5] LUUK K A, DORREN. A review of rockfall mechanics and modelling approaches [J]. Progress in Physical Geography, 2003, 27(1): 69-87.
[6] CROSTA G B, AGLIARDI F. Parametric evaluation of 3D dispersion of rockfall trajectories [J]. Natural Hazards and Earth System Science, 2004, 4(4): 583-598.
[7] VALAGUSSA A, FRATTINI P, CROSTA G B. Earthquake-induced rockfall hazard zoning [J]. Engineering Geology, 2014, 182: 213-225.
[8] 魏新容,段绍臻,孙金龙,等.基于碰撞模型的斜坡滚石颗粒速度预测[J].力学学报,2020,52(3):707-715. [WEI Xinrong, DUAN Shaozhen, SUN Jinlong, et al. Velocity prediction of slope rolling stone particle based on collision model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 707-715]
[9] 吕庆,周春锋,于洋,等. 滚石坡面碰撞破裂效应的试验研究[J]. 岩石力学与工程学报,2017,36(s1): 3359-3366 [LU Qing, ZHOU Chunfeng, YU Yang, et al. Experimental study on fragmentation effects of rockfall impact upon slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(s1): 3359-3366]
[10] 易伟,余斌,刘秧,等. 滚石冲击力计算方法研究[J]. 山地学报,2016,34(3): 310-316. [YI Wei, YU Bin, LIU Yang, et al. Research on calculation method of rockfall impact force [J]. Mountain Research, 2016,34(3): 310-316]
[11] 杨海清,周小平. 边坡落石运动轨迹计算新方法[J]. 岩土力学,2009,30(11): 3411-3416. [YANG Haiqing,ZHOU Xiaoping. A new approach to calculate trajectory of rockfall[J]. Rock and Soil Mechanics, 2009, 30(11): 3411-3416]
[12] 唐红梅,易朋莹. 危岩落石运动路径研究[J]. 重庆建筑大学学报,2003,25(1):17-23. [TANG Hongmei, YI Pengying. Research on dangerous rock movement route [J]. Journal of Chongqing Jianzhu University, 2003, 25(1): 17-23]
[13] HUANG Runqiu, LIU Weihua, ZHOU Jiangping, et al. Experimental field study of movement characteristics of rock blocks falling down a slope [J]. Journal of Earth Science, 2010, 21(3): 330-339.
[14] KOHNO M, TSUCHIDA A, KITASAKO K, et al. Laboratory experiment and numerical analysis of rockfall impacts [J]. Journal of the Society of Materials Science Japan, 2016, 65(5): 377-383.
[15] 于怀昌,余宏明,刘汉东. 边坡滚石运动学参数敏感性[J]. 山地学报,2010,28(2):154-160 [YU Huaichang, YU Hongming, LIU Handong. Study on the sensitivity of kinematic parameters for slope rockfall[J]. Mountain Research, 2010, 28(2): 154-160]
[16] ASTERIOU P, TSIAMBAOS G. Empirical model for predicting rockfall trajectory direction [J]. Rock Mechanics & Rock Engineering, 2015, 49(3): 1-15.
[17] ZHANG Shilin, YANG Xingguo, ZHOU Jiawen. A theoretical model for the estimation of maximum impact force from a rockfall based on contact theory [J]. Journal of Mountain Science, 2018, 15(2): 430-443.
[18] CUI Shenghua, PEI Xiangjun, HUANG Runqiu. Rolling motion behavior of rockfall on gentle slope: an experimental approach[J]. Journal of Mountain Science, 2017, 14(08): 1550-1562.
[19] 马良筠,高安泽,刘克远. 岩石某些力学参数的试验研究[J]. 力学学报,1991,23(4):507-512 [MA Liangyun, GAO Anze, LIU Keyuan. Experimental study on some mechanical parameters of rock [J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(4): 507-512]
[20] 王帅,郝振华,徐鹏飞,等. 粗糙颗粒动理学及稠密气固两相流动的数值模拟[J]. 力学学报,2012,44(2):278-286. [WANG Shuai, HAO Zhenhua, XU Pengfei, et al. Kinetic theory of rough spheres and numerical simulation of dense gas-particles flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 278-286]
[21] CHAU K T, WONG R H C, WUJianjun. Coefficient of restitution and rotational motions of rockfall impacts[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(1):69-77.
[22] XIE Li, ZHENG Xiaojing, ZHOU Youhe. A theoretical study of the distribution of the initial velocity of saltating sand particles by collision [J]. Key Engineering Materials, 2003, 243-244: 613-618.
[23] ZHENG Xiaojing, XIE Li, ZHOU Youhe. Exploration of probability distribution of velocities of saltating sand particles based on the stochastic particle–bed collisions[J]. Physics Letters A, 2005, 341(1): 107-118.
[24] 章广成,向欣,唐辉明. 落石碰撞恢复系数的现场试验与数值计算[J]. 岩石力学与工程学报,2011,30(6):1266-1273 [ZHANG Guangcheng, XIANG Xin, TANG Huiming. Field test and numerical calculation of restitution coefficient of rockfall collision [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1266-1273]

相似文献/References:

[1]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(3):101.
[2]易 伟,余 斌,刘 秧,等.滚石冲击力计算方法研究[J].山地学报,2016,(03):310.[doi:10.16089/j.cnki.1008-2786.000133]
 YI Wei,YU Bing,LIU Yang,et al.Research on Calculation Method of Rockfall Impact Force[J].Mountain Research,2016,(3):310.[doi:10.16089/j.cnki.1008-2786.000133]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-07-25; 改回日期(Accepted date):2020-05-27
基金项目(Foundation item):国家自然科学基金项目(11702124)。[National Natural Science Foundation of China(11702124)]
作者简介(Biography):孙金龙(1994-),男,河南三门峡人,硕士研究生,主要研究方向:颗粒系统力学性能。[SUN Jinlong(1994-), male, born in Sanmenxia, Henan province, M.Sc. candidate, research on mechanical properties of particle system] E-mail: 718707607@qq.com
*通讯作者(Corresponding author):段绍臻(1982-),女,博士,副教授,主要研究方向:颗粒系统力学性能及结构工程。[DUAN Shaozhen(1982-), female, Ph.D., associate professor, research on mechanical properties and structural engineering of granular systems] E-mail: dszbest@126.com
更新日期/Last Update: 2020-05-30