参考文献/References:
[1] 徐飞, 张汶海, 赵玲玲, 等. 1960—2018年珠江流域极端气温时空变化特征[J]. 山地学报,2022, 40(3): 343-354. [XU Fei, ZHANG Wenhai, ZHAO Lingling, et al. Spatio-temporal variability in extreme temperature from 1960 to 2018 in the Pearl River basin, China [J]. Mountain Research, 2022, 40(3): 343-354] DOI: 10.16089/j.cnki.1008-2786.000676
[2] OLIVER E C J, DONAT M G, BURROWS M T, et al. Longer and more frequent marine heatwaves over the past century [J]. Nature Communications, 2018, 9(1): 1324. DOI: 10.1038/s41467-018-03732-9
[3] 甘露, 刘睿, 冀琴, 等. 四川省极端降水事件时空演变特征[J]. 山地学报, 2021, 39(1): 10-24. [GAN Lu, LIU Rui, JI Qin, et al. Spatio-temporal evolution characteristics analysis of extreme precipitation in Sichuan province, China [J]. Mountain Research, 2021, 39(1): 10-24] DOI: 10.16089/j.cnki.1008-2786.000572
[4] LI Linchao, ZOU Yufeng, LI Yi, et al. Trends, change points and spatial variability in extreme precipitation events from 1961 to 2017 in China [J]. Hydrology Research, 2020, 51(3): 484-504. DOI: 10.2166/nh.2020.095
[5] 曹瑜, 游庆龙, 马茜蓉, 等. 青藏高原夏季极端降水概率分布特征[J]. 高原气象, 2017, 36(5): 1176-1187. [CAO Yu, YOU Qinglong, MA Qianrong, et al. Probability distribution for the summer extreme precipitation in the Qinghai-Tibetan Plateau [J]. Plateau Meteorology, 2017, 36(5): 1176-1187] DOI: 10.7522/j.issn.1000-0534.2016.00131
[6] 史维良, 车璐阳, 李涛. 陕西省汛期极端降水概率分布及综合危险性评估[J]. 干旱区地理, 2023, 46(9): 1407-1417. [SHI Weiliang, CHE Luyang, LI Tao. Probability distribution and comprehensive risk assessment of extreme precipitation in flood season in Shaanxi province [J]. Arid Land Geography, 2023, 46(9): 1407-1417] DOI: 10.12118/j.issn.1000-6060.2022.567
[7] 陈子凡, 王磊, 李谢辉, 等. 西南地区极端降水时空变化特征及其与强ENSO事件的关系 [J].高原气象, 2022, 41(3): 604-616. [CHEN Zifan, WANG Lei, LI Xiehui, et al. Spatiotemporal change characteristics of extreme precipitation in south-western China and its relationship with intense ENSO events [J]. Plateau Meteorology, 2022, 41(3): 604-616] DOI: 10.7522/j.issn.1000-0534.2022.00004
[8] 邹磊, 夏军, 张印. 长江中下游极端降水时空演变特征研究[J]. 长江流域资源与环境, 2021, 30(5): 1264-1274. [ZOU Lei, XIA Jun, ZHANG Yin. Spatial-temporal characteristics of extreme precipitation in the middle and lower reaches of the Yangtze River [J]. Resources and Environment in the Yangtze Basin, 2021, 30(5): 1264-1274] DOI: 10.11870/cjlyzyyhj202105023
[9] WENTZ F J, RICCIARDULLI L, HILBURN K, et al. How much more rain will global warming bring [J]. Science, 2007, 317(5835): 233-235. DOI: 10.1126/science.1140746
[10] 王卫平, 刘永强, 赵求东, 等. 新疆地区极端降水时空变化特征及对气温变化的响应[J]. 农业工程学报, 2022, 38(4): 133-142. [WANG Weiping, LIU Yongqiang, ZHAO Qiudong, et al. Spatiotemporal characteristics of extreme precipitation and its response to temperature change in Xinjiang, China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(4): 133-142] DOI: 10.11975/j.issn.1002-6819.2022.04.016
[11] MIAO Chiyuan, DUAN Qingyun, SUN Qiaohong, et al. Non-uniform changes in different categories of precipitation intensity across China and the associated large-scale circulations [J]. Environmental Research Letters, 2019, 14(2): 025004. DOI: 10.1088/1748-9326/aaf306
[12] LIU Meixian, XU Xianli, SUN Alex. Decreasing spatial variability in precipitation extremes in southwestern China and the local/large-scale influencing factors [J]. Journal of Geophysical Research: Atmospheres, 2015, 120(13): 6480-6488. DOI: 10.1002/2014JD022886
[13] 韦小茶, 周秋文, 张继, 等. 1982—2016年广西NDVI时空变化及其影响因素[J]. 山地学报, 2020, 38(4): 520-531. [WEI Xiaocha, ZHOU Qiuwen, ZHANG Ji, et al. Spatial-temporal changes of NDVI and its influence factors in Guangxi, China during 1982-2016 [J]. Mountain Research, 2020, 38(4): 520-531] DOI: 10.16089/j.cnki.1008-2786.000530
[14] 冯椰林, 贺中华, 焦树林, 等. 基于CMIP6气候模式的贵州省极端降水情景预估[J]. 水土保持研究, 2023, 30(1): 282-290. [FENG Yelin, HE Zhonghua, JIAO Shulin, et al. Scenario prediction of extreme precipitation in Guizhou province based on CMIP6 climate model [J]. Research of Soil and Water Conservation, 2023, 30(1): 282-290] DOI: 10.13869/j.cnki.rswc.20220621.004
[15] 张娇艳, 李扬, 张东海, 等. 基于CMIP5全球气候模式的21世纪贵州省极端降水事件预估[J]. 中国农业气象, 2017, 38(10): 655-662. [ZHANG Jiaoyan, LI Yang, ZHANG Donghai, et al. Projected changes in extreme precipitation events in Guizhou based on CMIP5 simulations over the 21st century [J]. Chinese Journal of Agrometeorology, 2017, 38(10): 655-662] DOI: 10.3969/j.issn.1000-6362.2017.10.004
[16] 贺中华, 陈晓翔. 基于土壤因素耦合的喀斯特流域水文干旱模拟——以贵州省为例[J]. 地理科学, 2013, 33(6): 724-734. [HE Zhonghua, CHEN Xiaoxiang. The hydrological drought simulating in karst basin based on coupled soil factors-taking Guizhou province as a case [J]. Scientia Geographica Sinica, 2013, 33(6): 724-734] DOI: 10.13249/j.cnki.sgs.2013.06.016
[17] 张玉虎, 王琛茜, 刘凯利, 等. 不同概率分布函数降雨极值的适用性分析[J]. 地理科学, 2015, 35(11): 1460-1467. [ZHANG Yuhu, WANG Chenxi, LIU Kaili, et al. Applicability of different probability distributions to estimated extreme rainfall [J]. Scientia Geographica Sinica, 2015, 35(11): 1460-1467] DOI: 10.13249/j.cnki.sgs.2015.11.015
[18] ZHAO Ruxin, WANG Huixiao, ZHAN Chesheng, et al. Comparative analysis of probability distributions for the Standardized Precipitation Index and drought evolution in China during 1961-2015 [J]. Theoretical and Applied Climatology, 2020, 139(3-4): 1363-1377. DOI: 10.1007/s00704-019-03050-0
[19] 王晶. 偏正态分布拟合真实数据的效果研究[D]. 南京: 南京邮电大学, 2022: 49. [WANG Jing. A study of the effect of fitting real data to the skew-normal distribution [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022: 49] DOI: 10.27251/d.cnki.gnjdc.2022.000043
[20] 吴孝情, 陈晓宏, 唐亦汉, 等. 珠江流域非平稳性降雨极值时空变化特征及其成因[J]. 水利学报, 2015, 46(9): 1055-1063. [WU Xiaoqing, CHEN Xiaohong, TANG Yihan, et al. Spatiotemporal variations and the causes of non-stationary extreme precipitation in the Pearl River basin [J]. Journal of Hydraulic Engineering, 2015, 46(9): 1055-1063] DOI: 10.13243/j.cnki.slxb.20141415
[21] 徐勇, 郭振东, 郑志威, 等. 2000—2021年成渝城市群PM2.5时空变化及驱动机制多维探测[J]. 环境科学, 2023, 44(7): 3724-3737. [XU Yong, GUO Zhendong, ZHENG Zhiwei, et al. Spatio-temporal variation and multi-dimensional detection of driving mechanism of PM2.5 concentration in the Chengdu-Chongqing urban agglomeration from 2000 to 2021 [J]. Environmental Science, 2023, 44(7): 3724-3737] DOI: 10.13227/j.hjkx.202207276
[22] 肖瑶, 赵林, 邹德富, 等. 基于地理探测器的青藏高原多年冻土分布影响因子分析[J]. 冰川冻土, 2021, 43(1): 311-321. [XIAO Yao, ZHAO Lin, ZOU Defu, et al. Analyses of the influence factors of permafrost distribution on the Qinghai-Tibet Plateau based on geographical detector [J]. Journal of Glaciology and Geocryology, 2021, 43(1): 311-321] DOI: 10.7522/j.issn.1000-0240.2019.0063
[23] 卢瑞荆. 贵州暴雨洪涝的气候特征分析[D]. 兰州: 兰州大学, 2010: 88. [LU Ruijing. Analysis of climate characteristic of rainstorm in Guizhou province [D]. Lanzhou: Lanzhou University, 2010: 88] DOI: 10.7666/d.Y1703527
[24] 丁立国. 贵州山地复杂地形下暴雨洪涝灾害风险研究[D]. 南京: 南京信息工程大学, 2022: 60. [DING Liguo. Study on the risk of heavy rainfall and flooding in the complex terrain of Guizhou mountains [D]. Nanjing: Nanjing University of Information Engineering, 2022: 60] DOI: 10.27248/d.cnki.gnjqc.2022.000181
[25] 王涛, 伊丽努尔·阿力甫江, 李思颖, 等. 三种趋势分析法在东帕米尔高原降水特征分析中的应用[J]. 气象, 2022, 48(10): 1312-1320. [WANG Tao, YILINUER Alifujiang, LI Siying, et al. Three trend analysis methods in precipitation characteristic analysis of eastern Pamirs [J]. Meteorlogical Monthly, 2022, 48(10): 1312-1320] DOI: 10.7519/j.issn.1000-0526.2022.080501
[26] 徐乔婷, 陈涟, 范月华, 等. 基于SPEI指数的兰州干旱特征与气候指数的关系[J]. 水文, 2021, 41(2): 56-62. [XU Qiaoting, CHEN Lian, FAN Yuehua, et al. Relationship between Lanzhou drought and climate indices based on SPEI index [J]. Journal of China Hydrology, 2021, 41(2): 56-62] DOI: 10.19797/j.cnki.1000-0852.20200213
[27] 查雪婷. 淮河流域极端降水时空演变特征及重现期研究[D]. 蚌埠: 安徽财经大学, 2022: 65. [ZHA Xueting. Spatial and temporal evolution characteristics and recurrence periods of extreme precipitation in the Huaihe River basin [D]. Bengbu: Anhui University of Finance and Economics, 2022: 65] DOI: 10.26916/d.cnki.gahcc.2022.000518
[28] 唐莉, 杨冰冰, 魏希, 等. 气候变化对江西省主汛期降雨极值时空差异的影响研究[J]. 水利水电技术, 2023, 54(1): 53-63. [TANG Li, YANG Bingbing, WEI Xi, et al. Study on the impact of climate change on the extreme rainfall distribution in main flood season of Jiangxi province [J]. Water Resources and Hydropower Engineering, 2023, 54(1): 53-63] DOI: 10.13928/j.cnki.wrahe.2023.01.005
[29] 黄国如, 陈易偲, 姚芝军. 高度城镇化背景下珠三角地区极端降雨时空演变特征[J]. 水科学进展, 2021, 32(2): 161-170. [HUANG Guoru, CHEN Yisi, YAO Zhijun. Spatial and temporal evolution characteristics of extreme rainfall in the Pearl River Delta under high urbanization [J]. Advances in Water Science, 2021, 32(2): 161-170] DOI: 10.14042/j.cnki.32.1309.2021.02.001
[30] QIAO Panjie, GONG Zhiqiang, LIU Weiqi, et al. Extreme rainfall synchronization network between southwest China and Asia-Pacific region [J]. Climate Dynamics, 2021, 57: 3207-3221. DOI: 10.1007/s00382-021-05865-y
[31] 王昊. 西南地区极端气候指数时空变化及其对NDVI的影响特征研究[D]. 北京: 北京林业大学, 2019: 81. [WANG Hao. Temporal and spatial variation of extreme climate indices and its impact on NDVI in southwestern China [D]. Beijing: Beijing Forestry University, 2019: 81] DOI: 10.26949/d.cnki.gblyu.2019.000881
[32] 李帅, 陈鲜艳, 龚文婷, 等. 1961—2020年三峡区间降水极值特征分析[J]. 长江流域资源与环境, 2022, 31(10): 2166-2175. [LI Shuai, CHEN Xianyan, GONG Wenting, et al. Characteristics of precipitation extremes in Three Gorges Reservoir intervening basin during 1961-2020 [J]. Resources and Environment in the Yangtze Basin, 2022, 31(10): 2166-2175] DOI: 10. 11870 /cjlyzyyhj202210006
[33] 孔锋, 孙劭. 基于SSPs的未来全球陆地极端降水强度的空间分异特征预估[J]. 灾害学, 2021, 36(4): 107-112+118. [KONG Feng, SUN Shao. Spatial differentiation prediction of global land extreme precipitation intensity based on SSPs [J]. Journal of Catastrophology, 2021, 36(4): 107-112+118] DOI: 10.3969/j.issn.1000-811X.2021.04.018
[34] 陈世发. ENSO对韶关市1951—2013年降雨侵蚀力影响研究[J]. 地理科学, 2016, 36(10): 1573-1580. [CHEN Shifa. Impact of ENSO on rainfall erosivity in Shaoguan city during 1951-2013[J]. Scientia Geographica Sinica, 2016, 36(10): 1573-1580] DOI: 10.13249/j.cnki.sgs.2016.10.015
[35] LAN Yongchao, KANG Ersi, MA Quanjie, et al. Runoff of the upper Yellow River above Tangnag: Characteristics, evolution and changing trends [J]. Journal of Geographical Sciences, 2001, 11(3): 46-53. DOI: 10.1007/bf02892313
[36] ANDERSON T R, HAWKINS E, JONES P D. CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today's Earth System Models [J]. Endeavour, 2016, 40(3): 178-187. DOI: 10.1016/j.endeavour.2016.07.002