[1]黄 鑫a,b,郑江坤a,等.川中丘陵区紫色土坡耕地植物篱措施对土壤抗蚀性的影响[J].山地学报,2024,(1):27-36.[doi:10.16089/j.cnki.1008-2786.000801]
 HUANG Xina,b,ZHENG Jiangkuna,et al.Effect of Hedgerow on Anti-Erodibility of Sloping Farmlands Consisted of Purple Soil in the Hilly Area of Central Sichuan Basin[J].Mountain Research,2024,(1):27-36.[doi:10.16089/j.cnki.1008-2786.000801]
点击复制

川中丘陵区紫色土坡耕地植物篱措施对土壤抗蚀性的影响
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第1期
页码:
27-36
栏目:
山地环境
出版日期:
2024-01-25

文章信息/Info

Title:
Effect of Hedgerow on Anti-Erodibility of Sloping Farmlands Consisted of Purple Soil in the Hilly Area of Central Sichuan Basin
文章编号:
1008-2786-(2024)1-027-10
作者:
黄 鑫1a 1b 郑江坤1a 1b* 任雨之1a 1b 陈 鑫2 王文武1a 1b
(1. 四川农业大学 a.林学院; b.水土保持与荒漠化防治四川省高校重点实验室, 成都 611130; 2. 遂宁水土保持试验站,四川 遂宁 629006)
Author(s):
HUANG Xin1a 1b ZHENG Jiangkun1a 1b* REN Yuzhi1a 1b CHEN Xin2 WANG Wenwu1a 1b
(1. a. College of Forestry; b. Key Laboratory of Soil and Water Conservation & Desertification Combating, Universities and Colleges of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; 2. Soil and Water Conervation Experimental Station in Suining, Suining 629006, Sichuan China)
关键词:
植物篱 坡耕地 抗蚀性指数 水稳性团聚体 紫色土
Keywords:
hedgerow sloping farmland anti-erodibility index water-stable aggregate purple soil
分类号:
S725.1
DOI:
10.16089/j.cnki.1008-2786.000801
文献标志码:
A
摘要:
川中丘陵区紫色土坡耕地水土流失严重,影响农作物增产增收。水土保持植物篱措施是提高土壤的抗侵蚀能力的有效生态手段。以往土壤抗蚀性的研究多集中于黄土高原,较少涉及植物篱作用下紫色土坡耕地抗蚀机理方面的研究。本文以新银合欢(Leucaena leucocephala)和香根草(Vetiveria zizanioides)为研究对象,基于试验站坡耕地小区定位观测的基础数据,结合土壤采样和实验分析,利用主成分分析法对种植不同植物篱的坡耕地土壤抗蚀性进行了综合评价。结果表明:(1)在分析11项指标后,2项主成分指标对解释土壤抗蚀性贡献率达到82.7%,其中水稳性团聚体被认定为关键指标。(2)植物篱显著提高了表层土的抗蚀性。与无植物篱的样区为对照,10°坡耕地上香根草和新银合欢植物篱小区的土壤抗蚀性综合指数(SERI)分别比对照区高2.048和0.853,15°坡耕地上香根草植物篱的SERI比对照区高1.321; 且植物篱下侧的土壤抗蚀性高于植物篱上侧,在10°和15°香根草植物篱小区,植物篱下侧抗蚀性指数分别达到上侧的2.0倍、1.5倍,而10°新银合欢植物篱小区的下侧抗蚀性综合指数达到上侧的1.1倍。(3)相较于新银合欢植物篱小区,香根草植物篱小区土壤表现出了更高的抗蚀性,且两种植物篱小区下侧土壤抗蚀性均优于上侧,选择密植草本植物篱并重点防治植物篱上侧土壤可有效减少坡耕地水土流失。研究成果可为川中丘陵区水土流失治理及农业增产提供科学依据。
Abstract:
In the hilly area of central Sichuan basin, some sloping farmlands primarily consisted of purple soil have suffered serious water-soil erosion, inhibiting crop yield and income increase. Planting hedgerow is an effective ecological means of improving soil anti-erodibility. Good efforts to increase soil erosion resistance were made in the Loess Plateau of China, but less involved in revelation of corrosion-resistant mechanism of purple soil by planting hedgerows on sloping farmlands in Sichuan basin.
In this study, it took Chrysopogon zizanioides and Leucaena glauca(L.)Benth in sloping farmlands of purple soil as research object. It collected long-term positioning observation data at Suining Soil and Water Conservation Test Station, Sichuan, China and field sampling; the principal component analysis method was used to comprehensively evaluate soil anti-erodibility of sloping farmland planted with different types of hedgerows.
(1)It found that 11 indexes of soil anti-erodibility could be explained by two principal components, with a contribution rate of up to 82.7%. The water-stable aggregate could be used as the best index to measure soil corrosion resistance.
(2)Hedgerows significantly improved anti-erodibility of surface soil. Supposing sample plots without hedgerow as a control group, on a sloping farmland of 10°, soil anti-erodibility index obtained from the Chrysopogon zizanioides hedgerow plot and the Leucaena glauca(L.)Benth hedgerow plot was 7.0 and 2.3 times higher than that of the control plot, respectively; on the 15°sloping farmland, the soil anti-erodibility index for the Chrysopogon zizanioides hedgerow plot was 26.7 times than that of the control plot. The soil anti-erodibility on the downside of a hedgerow was higher than that on the upside. On the sloping farmland of 10° and 15°, the soil anti-erodibility on the downside was 2.0 and 1.5 times higher than that on the upside, respectively; and for Leucaena glauca(L.)Benth hedgerow, its value on the downside was 1.1 times higher that on the upside on the 10° sloping farmland.
(3)Generally, the soil anti-erodibility on the Chrysopogon zizanioides hedgerow plot was higher than that of the Leucaena glauca(L.)Benth hedgerow plot, and index value examined on the downside was higher than those on the upsides.
This study revealed that the selection of a suitable hedgerow type and preservation of the surface soil on the upside of hedgerow could effectively reduce soil-water loss in sloping farmland, which would provide a scientific guide to soil erosion control for agricultural yield increase in the hilly area of central Sichuan basin.

参考文献/References:

[1] 中国科学院成都分院土壤研究所. 中国紫色土: 上篇[M]. 北京: 科学出版社, 1991: 203-210.[Institute of Soil Sciences, Chengdu Branch of Chinese Academy of Sciences. Purple soils in China(1)[M]. Beijing: Science Press, 1991: 203-210]
[2] 黄鑫. 定植植物篱对紫色土坡耕地表层土壤理化性质及抗蚀性的影响[D]. 成都: 四川农业大学, 2016: 11-26.[HUANG Xin. Influence of planting hedgerows on the surface soil physicochemical properties and erosion resistance of purple soil sloping cropland[D]. Chengdu: Sichuan Agricultural University, 2016: 11-26]
[3] PHAN T N, LIKITLERSUANG S, KAMCHOOM V, et al. Root biomechanical properties of chrysopogon zizanioides and chrysopogon nemoralis for soil reinforcement and slope stabilization[J]. Land Degradation and Development, 2021, 32(16): 4624-4636. DOI: 10.1002/ldr.4063
[4] 黄鑫, 蒲晓君, 郑江坤, 等. 不同植物篱对紫色土区坡耕地表层土壤理化性质的影响[J]. 水土保持学报, 2016, 30(4): 173-177.[HUANG Xin, PU Xiaojun, ZHENG Jiangkun, et al. The impact of hedgerows on soil physicochemical properties in purple soil area[J]. Journal of Soil and Water Conservation, 2016, 30(4): 173-177] DOI: 10.13870/j.cnki.stbcxb.2016.04.029
[5] 李波, 李晔, 赵绍林, 等. 植物篱对石灰土坡耕地理化性质及磷素流失的影响[J]. 水土保持学报, 2017, 31(5): 14-18+24.[LI Bo, LI Ye, ZHAO Shaolin, et al. Effects of hedgerows on physical and chemical properties and phosphorus loss in the lime soil slope farmland[J]. Journal of Soil and Water Conservation, 2017, 31(5): 14-18+24] DOI: 10.13870/j.cnki.stbcxb.2017.05.003
[6] ZHAO Chu, NIE Yuhan, XIN Jianpan, et al. Soil erosion effectively alleviated by Miscanthus sacchariflorus, a potential candidate for land deterioration improvement[J]. Rhizosphere, 2023, 26: 100694. DOI: 10.1016/j.rhisph.2023.100694
[7] MA Rentian, HU Feinan, XU Chenyang, et al. Vegetation restoration enhances soil erosion resistance through decreasing the net repulsive force between soil particles[J]. Catena, 2023, 226: 107085. DOI: 10.1016/j.catena.2023.107085
[8] 李超, 周正朝, 朱冰冰, 等. 黄土丘陵区不同撂荒年限土壤入渗及抗冲性研究[J]. 水土保持学报, 2017, 31(2): 61-66.[LI Chao, ZHOU Zhengchao, ZHU Bingbing, et al. Research on soil infiltration capacity and soil anti-scouribility on different abandoned land in the loess hilly region[J]. Journal of Soil and Water Conservation, 2017, 31(2): 61-66] DOI: 10.13870/j.cnki.stbcxb.2017.02.012
[9] 任雨之, 郑江坤, 付滟, 等. 不同耕种模式下遂宁组紫色土坡耕地产流产沙特征[J]. 水土保持学报, 2019, 33(2): 30-38.[REN Yuzhi, ZHENG Jiangkun, FU Yan, et al. Characteristics of runoff and sediment yield in purple soil sloping farmland under different tillage patterns in Suining formation[J]. Journal of Soil and Water Conservation, 2019, 33(2): 30-38] DOI: 10.13870/j.cnki.stbcxb.2019.02.005
[10] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 25-38.[BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: Chinese Agricultural Press, 2000: 25-38]
[11] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978: 25-29.[Nanjing Institute of Soil Science, Chinese Academy of Sciences. Soil physicochemical analysis[M]. Shanghai: Shanghai Science and Technology Press, 1978: 25-29]
[12] 张鹏, 贾志宽, 王维, 等. 秸秆还田对宁南半干旱地区土壤团聚体特征的影响[J]. 中国农业科学, 2012, 45(8): 1513-1520.[ZHANG Peng, JIA Zhikuan, WANG Wei, et al. Effects of straw returning on characteristics of soil aggregates in semi-arid areas in southern Ningxia of China[J]. Scientia Agricultura Sinica, 2012, 45(8): 1513-1520] DOI: 10.3864/j.issn.0578-1752.2012.08.007
[13] HUANG Xiaofang, LIN Lirong, DING Shuwen, et al. Characteristics of soil erodibility K value and its influencing factors in the Changyan Watershed, southwest Hubei, China[J]. Land, 2022, 11(1): 134. DOI: 10.3390/land11010134
[14] WILLIAMS J R, RENARD K G, DYKE P T. A new method for assessing erosion's effects on soil productivity[J]. Journal of Soil and Water Conservation, 1983, 38(1): 381-383.
[15] LIU Ya, LIU Gang, XIAO Hai, et al. Predicting the interrill erosion rate on hillslopes incorporating soil aggregate stability on the Loess Plateau of China[J]. Journal of Hydrology, 2023, 622: 129698. DOI: 10.1016/j.jhydrol.2023.129698
[16] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896-1899.[YANG Peiling, LUO Yuanpei, SHI Yuanchun. Fractal characteristics of soil characterized by weight distribution of particle size[J]. Chinese Science Bulletin, 1993, 38(20): 1896-1899]
[17] 齐民友, 刘禄勤, 王文祥, 等. 概率论与数理统计[M]. 武汉: 武汉大学出版社, 2011: 35-42.[QI Minyou, LIU Luqing, WANG Wenxiang, et al. Probability and statistics[M]. Wuhan: Wuhan University Press, 2011: 35-42]
[18] 李强, 刘国彬, 杨俊诚, 等. 一种量化根系抗侵蚀指标的构建及应用: 根系构架抗蚀指数[J]. 应用生态学报, 2020, 31(9): 2955-2962.[LI Qiang, LIU Guobin, YANG Juncheng, et al. Construction and application of a new index for quantifying root erosion resistance: Root framework erosion resistance index[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 2955-2962. DOI: 10.13287/j.1001-9332.202009.010
[19] TESFAYE G, DEBEBE Y, YAKOB T. Adoption and effect of vetiver grass(Vetiveria zizanioides)on soil erosion in Somodo Watershed, South-Western Ethiopia[J]. Open Access Library Journal, 2018, 5(5): e4431. DOI: 10.4236/oalib.1104431
[20] 王针针, 刘枭宏, 谌芸, 等. 紫色土区植物篱篱前淤积带与篱下土坎土壤抗蚀性研究[J]. 水土保持学报, 2020, 34(5): 61-67.[WANG Zhenzhen, LIU Xiaohong, CHEN Yun, et al. Study on soil anti-erodibility between sedimentation zone in front of hedgerows and ridge behind hedgerows in purple soil area[J]. Journal of Soil and Water Conservation, 2020, 34(5): 61-67] DOI: 10.13870/j.cnki.stbcxb.2020.05.009
[21] 蒲玉琳, 林超文, 谢德体, 等. 植物篱-农作坡地土壤团聚体组成和稳定性特征[J]. 应用生态学报, 2013, 24(1): 122-128.[PU Yulin, LIN Chaowen, XIE Deti, et al. Composition and stability of soil aggregates in hedgerow-crop slope land[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 122-128] DOI: 10.13287/j.1001-9332.2013.0133
[22] WU Dan, PENG Rui, HUANG Lin, et al. Spatio-temporal analysis and driving factors of soil water erosion in the Three-River Headwaters region, China[J]. Water, 2022, 14(24): 4127. DOI: 10.3390/w14244127
[23] 熊泳. 川中丘陵区遂宁组紫色土抗蚀性研究[D]. 南充: 西华师范大学, 2022: 14-27.[XIONG Yong. Anti-erodibility of soils developed from Suining formation in the hilly area of central Sichuan basin[D]. Nanchong: China West Normal University, 2022: 14-27]
[24] 王文艳. 黄土中主要粘土矿物构成对土壤肥力与抗蚀性的影响及空间变异研究[D].杭州: 浙江大学, 2013: 16-21.[WANG Wenyan. The influence and spatial variability of main clay mineral composition in loess on soil fertility and corrosion resistance[D]. Hangzhou: Zhejiang University, 2013: 16-21]
[25] WANG Lei, WU Jiajun, XIE Jianzhi, et al. Effects of different hedgerow patterns on the soil physicochemical properties, erodibility, and fractal characteristics of slope farmland in the Miyun Reservoir area[J]. Plants, 2022, 11(19): 2537. DOI: 10.3390/plants11192537
[26] LI Songyang, GAO Ruoyun, HUANG Maowei, et al. Multifractal features of particle-size distribution and their relationships with soil erosion resistance under different vegetation types in debris flow basin[J]. Frontiers in Earth Science, 2022, 10: 927862. DOI: 10.3389/feart.2022.927862
[27] 赵云鹤, 钟鹏, 高晗, 等. 土地利用类型对典型黑土团聚体稳定性和抗蚀性的影响[J]. 东北林业大学学报, 2023, 51(9): 112-119.[ZHAO Yunhe, ZHONG Peng, GAO Han, et al. Effects of land use types on stability of anti-erodibility of typical black soil aggregates[J]. Journal of Northeast Forestry University, 2023, 51(9): 112-119] DOI: 10.13759/j.cnki.dlxb.2023.09.016
[28] 李英, 林圣玉, 张龙, 等. 鄱阳湖生态经济区坡耕地表土抗蚀性评价[J]. 中国水土保持, 2016(7): 48-51.[LI Ying, LIN Shengyu, ZHANG Long, et al. Evaluation of the erosion resistance of surface soils in sloped farmland in the Poyang Lake Ecological Economic Zone[J]. Soil and Water Conservation in China, 2016(7): 48-51] DOI: 10.14123/j.cnki.swcc.2016.0185
[29] 高敏. 三峡库区紫色土小流域土壤可蚀性K值研究[D]. 重庆: 西南大学, 2011: 13-19.[GAO Min. Study on soil erodibility K values in small watersheds of purple soil in the Three Gorges Reservoir area[D]. Chongqing: Southwestern University, 2011: 13-19]
[30] ZHONG Shouqin, HAN Zhen, DU Jing, et al. Relationships between the lithology of purple rocks and the pedogenesis of purple soils in the Sichuan Basin, China[J]. Scientific Reports, 2019, 9(1): 13272. DOI: 10.1038/s41598-019-49687-9
[31] 李笑雨. 青藏高原南部土壤理化特性及土壤质量评价研究[D]. 咸阳: 西北农林科技大学, 2023: 18-26.[LI Xiaoyu. Study on soil physicochemical characteristics and soil quality assessment in the southern Qinghai-Tibet Plateau[D]. Xianyang: Northwest Agriculture and Forest University, 2023: 18-26.] DOI: 10.27409/d.cnki.gxbnu.2023.000871
[32] 唐夫凯. 岩溶峡谷区不同土地利用方式土壤抗蚀性研究[D]. 北京: 中国林业科学研究院, 2016: 27-43.[TANG Fukai. Study of soil anti-erodibility of different land use types in karst valley region[D]. Beijing: Chinese Academy of Forestry, 2016: 27-43.]
[33] 唐菡. 喀斯特坡地草篱根系固土力学性能及其主要影响因素[D]. 重庆: 西南大学, 2020: 31-36.[TANG Han. The mechanical properties and its main influencing factors of herb hedgerow roots under karst slope environment[D]. Chongqing: Southwest University, 2020: 31-36] DOI: 10.27684/d.cnki.gxndx.2020.002934
[34] WENDEL A S, BAUKE S L, AMELUNG W, et al. Root-rhizosphere-soil interactions in biopores[J]. Plant and Soil, 2022, 475(1-2): 253-277. DOI: 10.1007/s11104-022-05406-4
[35] 李平安. 延安地区蒿属植物固土效应研究[D]. 西安: 长安大学, 2022: 58-63.[LI Pingan. Study on the mechanical effect of artemisia species in Yan'an area[D]. Xi'an: Chang'an University, 2022: 58-63] DOI: 10.26976/d.cnki.gchau.2022.001565
[36] DIMKPA C O. Soil properties influence the response of terrestrial plants to metallic nanoparticles exposure[J]. Current Opinion in Environmental Science and Health, 2018, 6: 1-8. DOI: 10.1016/j.coesh.2018.06.007
[37] 张栋. 灌丛垫固土作用机制及其生态护岸效果研究[D]. 北京: 北京林业大学, 2019: 103-104.[ZHANG Dong. Soil-fixing mechanism and ecological revetment effect of living brush mattress[D]. Beijing: Beijing Forestry University, 2019: 103-104]
[38] 齐雪. 典型草原区露天煤矿排土场重建植物群落演替特征和土壤养分动态[D]. 内蒙古: 内蒙古农业大学, 2023: 34-51.[QI Xue. Succession characteristics of re-vegetation community and dynamics of soil nutrients in open-pit coal mine in typical steppe[D]. Inner Mongolia: Inner Mongolia Agricultural University, 2023: 34-51] DOI: 10.27229/d.cnki.gnmnu.2023.000041
[39] 马庆旭. 植物对氨基酸的吸收及pH和Cd胁迫对其吸收的影响机制[D]. 杭州: 浙江大学, 2019: 44-45.[MA Qingxu. The uptake of acids and the effects of pH and Cd stress on plants absorption[D]. Hangzhou: Zhejiang University, 2019: 44-45]
[40] QI Jiarui, GUO Mingming, ZHOU Pengchong, et al. Soil erosion resistance factors in different types of gully heads developed in four main land-uses in the Mollisols region of northeast China[J]. Soil and Tillage Research, 2023, 230: 105697. DOI: 10.1016/j.still.2023.105697
[41] 张睿博, 汪金松, 王全成, 等. 土壤颗粒态有机碳与矿物结合态有机碳对气候变暖响应的研究进展[J]. 地理科学进展, 2023, 42(12): 2471-2484.[ZHANG Ruibo, WANG Jinsong, WANG Quancheng, et al. Responses of soil particulate and mineral-associated organic carbon to climate warming: A review[J]. Progress in Geography, 2023, 42(12): 2471-2484] DOI: 10.18306/dlkxjz.2023.12.015
[42] BATES S E, WANDRAG E M, DUNCAN R P, et al. Calculating the uncertainty associated with log response ratios in plant-soil feedback studies[J]. Plant Ecology, 2020(9): 1-9. DOI: 10.1007/s11258-019-00981-6
[43] WANG Zhenhong, FANG Hong, CHEN Mouhui. Effects of root exudates of woody species on the soil anti-erodibility in the rhizosphere in a karst region, China[J]. PeerJ, 2017, 5: e3029. DOI: 10.7717/peerj.3029
[44] ZHAO Bingqin, ZHANG Lun, XIA Zhenyao, et al. Effects of rainfall intensity and vegetation cover on erosion characteristics of a soil containing rock fragments slope[J]. Advances in Civil Engineering, 2019: 7043428. DOI: 10.1155/2019/7043428
[45] LI Jing, LI Zhanbin, GUO Mengjing, et al. Effects of vegetation restoration on soil physical properties of abandoned farmland on the Loess Plateau, China[J]. Environmental Earth Sciences, 2018, 77(5): 205. DOI: 10.1007/s12665-018-7385-7

相似文献/References:

[1]韩 珍,陈晓燕*,李彦海,等.近饱和与非饱和土壤细沟水流输沙能力的对比研究[J].山地学报,2020,(6):841.[doi:10.16089/j.cnki.1008-2786.000560]
 HAN Zhen,CHEN Xiaoyan*,LI Yanhai,et al.Comparison of Sediment Transport Capacity along Rills of Partially Saturated and Non-Saturated Soils[J].Mountain Research,2020,(1):841.[doi:10.16089/j.cnki.1008-2786.000560]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 01-21; 改回日期(Accepted date):2023- 07- 02
基金项目(Foundation item): 国家自然科学基金(41601028, 41671277); 四川省重大科技专项课题(2018SZDZX0034); 中国博士后科学基金面上项目(2012M511938)。[National Natural Science Foundation of China(41601028, 41671277); Major Science and Technology Special Project of Sichuan Province(2018SZDZX0034); General Program of China Postdoctoral Science Foundation(2012M511938)]
作者简介(Biography): 黄鑫(1991-),男,四川达州人,硕士,工程师,主要研究方向:水土保持。[HUANG Xin(1991-), male, born in Dazhou, Sichuan province, M.Sc., research on soil and water conservation] E-mail:631087414@qq.com
*通讯作者(Corresponding author): 郑江坤(1982-),男,博士,副教授,主要研究方向:生态水文。[ZHENG Jiangkun(1982-), male, Ph.D., associate professor, research on eco-hydrology] E-mail:jiangkunzheng@126.com
更新日期/Last Update: 2024-01-30