[1]过怡婷a,b,张思盈a,等.蒋家沟干热河谷区灌草层植被与土壤的养分分布及生态化学计量特征[J].山地学报,2023,(6):824-835.[doi:10.16089/j.cnki.1008-2786.000790]
 GUO Yitinga,b,ZHANG Siyinga,et al.Nutrient Distribution and Ecological Stoichiometry Characteristics of Shrub-Grass Layer Vegetation and Soil in the Jiangjia Gully, China[J].Mountain Research,2023,(6):824-835.[doi:10.16089/j.cnki.1008-2786.000790]
点击复制

蒋家沟干热河谷区灌草层植被与土壤的养分分布及生态化学计量特征
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第6期
页码:
824-835
栏目:
山地环境
出版日期:
2024-02-05

文章信息/Info

Title:
Nutrient Distribution and Ecological Stoichiometry Characteristics of Shrub-Grass Layer Vegetation and Soil in the Jiangjia Gully, China
文章编号:
1008-2786-(2023)6-824-12
作者:
过怡婷a b张思盈a刘 颖a b沈婉玲a林勇明a b*
(福建农林大学 a.林学院; b.福建省高校森林生态系统过程与经营重点实验室,福州 350002)
Author(s):
GUO Yitingab ZHANG Siyinga LIU Yingab SHEN Wanlinga LIN Yongmingab*
(a. College of Forestry; b. Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
关键词:
土壤养分 化学计量比 相关性分析 干热河谷区 云南蒋家沟
Keywords:
soil nutrients stoichiometric ratio analysis of relationship dry-hot valley zone Jiangjia Gully
分类号:
Q948.113
DOI:
10.16089/j.cnki.1008-2786.000790
文献标志码:
A
摘要:
蒋家沟干热河谷区泥石流与滑坡灾害频发、植被枯败稀疏、土壤结构紊乱、生态环境脆弱,是金沙江上游生态严重退化的典型流域。植被和土壤在退化生态系统修复和治理中扮演着至关重要的角色。对该流域植被与土壤的研究,多侧重从单一物种或土壤酶活性等角度分析植被与土壤的养分耦合关系,缺少对灌草层植物体养分含量与土壤养分含量的耦合机制研究,即植被-土壤耦合机制机理尚不明确。本文选取蒋家沟干热河谷区典型灌草层植被,研究碳(C)、氮(N)、磷(P)、钾(K)元素在植被地上、根系和土壤的养分分布和生态化学计量特征及其相关性。结果显示:(1)与全国陆地植物平均水平相比,干热河谷区灌草层植被地上和根系表现出低C,高N、P、K的特点; 土壤表现出低C高P的特点。(2)植被地上部分的C、N、P、K含量均显著高于根系,C、N、P含量均显著高于土壤; 土壤K含量(56.05 g/kg)显著高于植被地上(18.43 g/kg)和根系(8.41 g/kg); 除P:K外(地上0.10>根系0.09>土壤0.01),其余5种化学计量比均表现为根系>地上>土壤。(3)灌草层植被地上、根系N、P、K含量及生态化学计量特征间均呈正相关,土壤与植被的C、N、P、K含量和化学计量比多数不存在相关性。(4)植被地上部分C:N(21.07)、C:P(247.05)、N:P(12.32)均低于根系(分别为32.95、512.10和15.71),符合“生长速率假说”。根据N:P、N:K、P:K判断,灌草层植被生长不受P、K限制而更易受到N的限制。根据C:N、C:P、N:P判断,与全国表层土壤平均值相比,土壤贫瘠缺乏C、N元素,P有效性较低。(5)植被地上和根系在养分的分配过程中具有协同性。干热河谷区气候条件下植物应对策略为选择提高生长速率、降低养分利用效率。蒋家沟流域生态恢复应增加土壤有机碳和氮素的含量来改善土壤环境,降低N元素对植物的限制。本研究可为改善蒋家沟流域生态环境提供参考。
Abstract:
The dry-hot valley of the Jiangjia Gully in the upper reaches of the Jinsha River is a typical basin with severe ecological degradation, which urgently needs restoration and management because of the frequent occurrence of mudslides and landslides, sparse vegetation, soil structure disorganization, and fragile ecological environment. Vegetation and soil play a crucial role in the restoration and management of degraded ecosystems. Previous research on vegetation and soil in this basin focused on analyzing the coupling relationship between vegetation and soil from a perspective of a single species or soil enzyme activity. However, there was a lack of research on the coupling mechanism between vegetation and soil nutrient content in the scrub layer, and the vegetation-soil coupling mechanism was not yet clear.
In this study, typical shrub-stratum vegetation in the dry-hot river valley areas of the Jiangjia Gully was collected as research object. It investigated nutrient distribution and ecological stoichiometric characteristics of carbon(C), nitrogen(N), phosphorus(P)and potassium(K)in the aboveground vegetation, root systems, and soil, as well as their correlation.
It found that(1)compared with national average of terrestrial plants, the aboveground and root systems of the shrub-grass layer in dry-hot river valley area were characterized by low carbon, high nitrogen, phosphorus and potassium, whereas the soil was low in carbon and high in phosphorus.(2)The C, N, P and K contents of aboveground vegetation parts were significantly higher than those of the root system and the contents of C, N and P in the aboveground vegetation were significantly higher than those in the soil. K content in the soil(56.05 g·kg-1)was significantly higher than that in the aboveground vegetation(18.43 g·kg-1)and the root system(8.41 g·kg-1). With the exception of P:K(aboveground 0.10>root system 0.09>soil 0.01), the remaining five stoichiometric ratios showed the following order: root system > aboveground > soil.(3)Positive correlations were found between aboveground and root system N, P, and K contents and the ecological stoichiometric characteristics of vegetation in the scrub layer, whereas most C, N, P, and K contents and stoichiometric ratios of soil and vegetation were not correlated.(4)The aboveground C:N(21.07), C:P(247.05), and N:P(12.32)ratios of vegetation were lower than those of the root system(32.95, 512.10 and 15.71, respectively ), which was consistent with the “growth rate hypothesis”. According to the N:P, N:K and P:K ratios, the growth of the shrub and grass layer vegetation was not limited by P and K, but was more vulnerable to N limitation. Comparison of the C:N, C:P and N:P ratios with the national average of surface soil, showed that the soil was barren and lacked C and N while P availability was low.(5)Aboveground vegetation and root systems acted synergistically in the process of nutrient allocation. In summary, the plant coping strategy under climatic conditions of dry and hot river valley area is to increase the growth rate and reduce nutrient utilization efficiency.
Ecological restoration of the Jiangjia Gully watershed should focus on soil organic carbon and nitrogen content and reduce the limitation of N to plants. This study can provide a reference for improving the ecological environment of the Jiangjia Gully watershed.

参考文献/References:

[1] 范建容, 杨超, 包维楷, 等. 西南地区干旱河谷范围及分区统计分析[J]. 山地学报, 2020, 38(2):303-313. [FAN Jianrong, YANG Chao, BAO Weikai, et al. Distribution scope and district statistical analysis of dry valleys in southwest China[J]. Mountain Research, 2020, 38(2): 303-313] DOI: 10.16089/j.cnki.1008-2786.000511
[2] 吴雨晴, 田赟, 周建琴, 等. 不同放牧制度草地土壤碳氮磷化学计量特征[J]. 应用与环境生物学报, 2019, 25(4):801-807. [WU Yuqing, TIAN Bin, ZHOU Jianqin, et al. Ecological stoichiometric characteristics of soil carbon, nitrogen, and phosphorus under different grazing regimes[J]. Journal of Application and Environmental Biology, 2019, 25(4): 801-807] DOI: 10.19675/j.cnki.1006-687x.2018.10004
[3] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8):3937-3947. [WANG Shaoqiang, YU Guirui. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947] DOI:10.3321/j.issn:1000-0933.2008.08.054
[4] 阿斯太肯·居力海提, 董乙强, 李靖, 等. 禁牧对不同气候区蒿类荒漠植被和土壤养分及化学计量特征的影响[J]. 干旱区资源与环境, 2021, 35(11):157-164. [Asitaiken·Julihaiti, DONG Yiqiang, LI Jing, et al. Effects of grazing exclusion on nutrition and stoichiometry characteristics of Artemisia desert vegetation and soil[J]. Journal of Arid Land Resources and Environment, 2021, 35(11): 157-164] DOI:10.13448/j.cnki.jalre.2021.311
[5] 朱永官, 段桂兰, 陈保冬, 等. 土壤-微生物-植物系统中矿物风化与元素循环[J]. 中国科学:地球科学, 2014, 44(6):1107-1116. [ZHU Yongguan, DUAN Guilan, CHEN Baodong, et al. Mineral weathering and element cycling in soil-microorganism-plant system[J]. Science China: Earth Sciences, 2014, 44(6): 1107-1116] DOI:10.1007/s11430-014-4861-0
[6] 魏雅丽, 郭芬芬, 陈安强, 等. 元谋干热河谷植被恢复对土壤酶活性的影响特征[J]. 农业环境科学学报, 2011, 30(1): 100-106.[WEI Yali, GUO Fenfen, CHEN Anqiang, et al. Effects of Vegetation Restoration on Soil Enzyme Activity in Yuanmou Dry-hot Valley, China[J]. Journal of Agro-Environment Science, 2011, 30(1): 100-106] DOI:CNKI:SUN:NHBH.0.2011-01-018
[7] 校亮, 熊东红, 张宝军, 等.干热河谷冲沟沟岸葛藤不同覆被状况及土壤性质差异分析[J]. 生态学报, 2018, 38(14): 5047-5055.[XIAO Liang, XIONG Donghong, ZHANG Baojun, et al. Analysis of soil properties in gully banks under different coverage of Kudzu in a dry-hot valley region[J]. Acta Ecologica Sinica, 2018, 38(14): 5047-5055]DOI:10.5846 /stxb201705130883
[8] 韩姣姣, 段旭, 赵洋毅. 金沙江干热河谷典型林草植被下坡面土壤水分分布控制因素[J]. 东北林业大学学报, 2018, 46(4): 29-34+38.[HAN Jiaojiao, DUAN Xu, ZHAO Yangyi. Dominating Factors of Soil Moisture Distribution in Typical Forest Vegetation Slopes in Dry Hot Valley Area of Jinsha River[J]. Journal of Northeast Forestry University, 2018, 46(4): 29-34+38] DOI:10.13759/j.cnki.dlxb.2018.04.006
[9] 余杭, 潘佳虹, 杨柳生, 等. 金沙江干热河谷优势草本植物生物量与土壤物理性质的关系[J]. 应用与环境生物学报, 2021, 27(4): 884-892. [YU Hang, PAN Jiahong, YANG Liusheng, et al. Relationship between biomass of dominant herbaceous plants and soil physical properties in a dry-hot valley area of the Jinsha River[J]. Chinese Journal of Applied & Environmental Biology, 2021, 27(4): 884-892] DOI:10.19675/j.cnki.1006-687x.2020.11007
[10] 贺静雯, 刘颖, 李松阳, 等. 蒋家沟流域植物群落灌草层数量分类、排序及其生境解释[J]. 应用与环境生物学报, 2020, 26(2): 451-459. [HE Jingwen, LIU Ying, LI Songyang, et al. Quantitative classification, sorting, and habitat interpretation of the shrub and grass layers of the plant communities in the Jiangjiagou Watershed[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(2): 451-459] DOI:10.19675/j.cnki.1006-687x.2019.05043
[11] 林勇明, 葛永刚, 王道杰, 等. 山区县乡公路建设对沿线景观格局的影响研究——以昆明市东川区蒋家沟小流域为例[J]. 长江流域资源与环境, 2016, 25(10):1566-1575. [LIN Yongming, GE Yonggang, WANG Daojie, et al. Impacts of county road construction on landscape pattern along the roads in mountainous area—a case study in Jiangjia watershed, Dongchuan district, Kunmin city[J]. Resources and Environment in the Yangtze Basin, 2016, 25(10): 1566-1575] DOI:10.11870/cjlyzyyhj201610011
[12] 张有富. 干热河谷气候区荒坡生物治理技术——以东川蒋家沟大凹子村为例[J]. 山地研究, 1998, 16(3):248-251. [ZHANG Youfu. The forest engineering technique on desert slope of dry hot valley—Dawazi countryside in Jiangjia Valley, Dongchuan City for example[J]. Mountain Research, 1998, 16(3): 248-251] DOI:10.1088/0256-307X/15/12/025
[13] 张有富. 蒋家沟流域的森林植被与泥石流[J]. 山地研究, 1987, 5(4):213-217. [ZHANG Youfu, Vegetation destruction and debris flow disasters in the Jiangjia Ravine[J]. Mountain Research, 1987, 5(4): 213-217] DOI: 10.16089/j.cnki.1008-2786.1987.04.006
[14] 杨仁文, 叶明富, 陈精日. 云南蒋家沟泥石流运动要素观测数据整编[J]. 山地研究, 1998, 16(4):338-341. [YANG Renwen, YE Mingfu, CHEN Jingri. Research on database of the debris flow motion characteristics in Jiangjia Gully[J]. Mountain Research, 1998, 16(4): 338-341] DOI:10.1038/sj.cr.7290029
[15] 阮长明, 唐国勇, 孙永玉, 等. 金沙江干热河谷不同植被类型植物叶片碳氮磷生态化学计量特征[J/OL]. 中南林业科技大学学报, 2023(9):97-104. [RUAN Changming, TANG Guoyong, SUN Yongyu, et al. Ecological stoichiometry of leaf C, N and P of different vegetation types in the Dry-Hot Valley of the Jinsha River[J/OL]. Journal of Central South University of Forestry & Technology, 2023(9): 97-104] DOI:10.14067/j.cnki.1673-923x.2023.09.010
[16] 黄耀华, 蒲文彩, 余志祥, 等. 元江干热河谷典型植物的叶片化学计量特征[J]. 云南大学学报(自然科学版), 2021, 43(4): 796-805. [HUANG Yaohua, PU Wencai, YU Zhixiang, et al. Stoichiometric characteristics of leaves of typical plants in the dry-hot valley of Yuanjiang[J]. Journal of Yunnan University: Natural Sciences Edition, 2021, 43(4): 796-805] DOI: 10.7540/j.ynu.20200220
[17] 闫帮国, 何光熊, 李纪潮, 等. 生态系统恢复后干热河谷植物叶片N、P、K含量及物种优势度的变化[J]. 应用生态学报, 2013, 24(4):956-960. [YAN Bangguo, HE Guangxiong, LI Jichao, et al. Changes of plant leaf N, P, and K concentrations and species dominance in an arid-hot valley after ecosystem restoration[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 956-960] DOI:10.13287/j.1001-9332.2013.0275
[18] 秦海, 李俊祥, 高三平, 等. 中国660种陆生植物叶片8种元素含量特征[J]. 生态学报, 2010, 30(5):1247-1257. [QIN Hai, LI Junxiang, GAO Sanping et al. Characteristics of leaf element contents for eight nutrients across 660 terrestrial plant species in China[J]. Acta Ecologic Sinica, 2010, 30(5): 1247-1257]
[19] 孔维苇, 王晓锋, 卢虹宇, 等. 三峡库区消落带4种典型草本植物的生态化学计量特征[J]. 生态学报, 2020, 40(13):4493-4506. [KONG Weiwei, WANG Xiaofeng, LU Hongyu, et al. Ecological stoichiometry of four typical herbaceous species in the littoral zone of three gorges reservoir[J]. Acta Ecologic Sinica, 2020, 40(13): 4493-4506] DOI:10.5846/stxb201911152464
[20] 刘颖, 贺静雯, 余杭, 等. 干热河谷优势灌木细根、粗根与叶片养分(C、N、P)含量及化学计量比[J]. 山地学报, 2020, 38(5):668-678. [LIU Ying, HE Jingwen, YU Hang, et al. Nutrients(C,N,P)contents and stoichiometric ratios of Fine root, coarse root and leaf in dominant shrubs in dry-hot Valley[J]. Mountain Research, 2020, 38(5): 668-678] DOI:10.16089/j.cnki.1008-2786.000544
[21] Chander K, Goyal S, Nandal D P, et al. Soil organic matter, microbial biomass and enzyme activities in a tropical agroforestry system[J]. Biol Fert Soils, 1998, 27(2): 168-172. DOI:10.1007/s003740050416
[22] Morrison I K, Foster N W. Fifteen-year change in forest floor organic and element content and cycling at the Turkey Lakes watershed[J]. Ecosystems, 2001, 4(6): 545-554. DOI:10.1007/s10021-001-0028-x
[23] 赵越, 罗志军, 廖牧鑫, 等. 泰和县耕地土壤养分空间及影响因素[J]. 水土保持学报, 2018, 32(5):296-303. [ZHAO Yue, LUO Zhijun, LIAO Muxin, et al. Study on the spatial distribution of soil nutrients and its influencing factors in the cultivated land of Taihe County[J]. Journal of Soil and Water Conservation, 2018, 32(5): 296-303] DOI:10.13870/j.cnki.stbcxb.2018.05.046
[24] 阮长明, 杜寿康, 孙永玉, 等. 金沙江干热河谷不同区段土壤碳氮磷化学计量和酶活性研究[J]. 环境科学研究, 2022, 35(11):2486-2494. [RUAN Changming, DU Shoukang, SUN Yongyu,et al. Stoichiometry of Soil Carbon, Nitrogen and Phosphorus and Soil Enzyme Activity at Various Reaches of the Dry-Hot Valley of Jinsha River[J]. Research of Environmental Sciences[J]. Research of Environmental Sciences, 2022, 35(11): 2486-2494] DOI:10.13198/j.issn.1001-6929.2022.07.21
[25] TIAN Hanqin, CHEN Guangsheng, ZHANG Chi, et al. Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(3): 139-151. DOI:10.1007/s10533-009-9382-0
[26] 丁雪丽, 韩晓增, 乔云发, 等. 农田土壤有机碳固存的主要影响因子及其稳定机制[J]. 土壤通报, 2012, 43(3):737-744. [DING Xueli, HAN Xiaozeng, QIAO Yunfa, et al. Sequestration of Organic Carbon in Cultivated Soils: Main Factors and Their Stabilization Mechanisms[J]. Chinese Journal of Soil Science, 2012, 43(3): 737-744] DOI:10.19336/j.cnki.trtb.2012.03.039
[27] Ågren G I. The C:N:P stoichiometry of autotrophs-theory and observations[J]. Ecology Letters, 2004, 7(3): 185-191. DOI: 10.1111/j.1461-0248.2004.00567.x
[28] HAN Wenxuan, FANG Jingyun, GUO Dali, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385. DOI:10.1111/j.1469-8137.2005.01530.x
[29] 闫洋洋, 王谢, 严坤, 等. 干热河谷区泥石流滩地不同景观类型土壤与微生物量C、N、P生态化学计量特征[J]. 生态学报, 2023, 43(11):4734-4746. [YAN Yangyang, WANG Xie, YAN Kun, et al. C:N:P ecological stoichiometry characteristics of soil and microbes of different landscape types in debris flow beach of dry-hot valley[J]. Acta Ecologica Sinica, 2023, 43(11): 4734-4746] DOI: 10.5846/stxb202110112858
[30] 吴聪, 王金牛, 卢涛, 等. 汶川地震对龙门山地区山地土壤理化性质的影响[J]. 应用与环境生物学报, 2012, 18(6):911-916. [WU Cong, WANG Jinniu, LU Tao, et al. Effect of Wenchuan earthquake on soil physical and chemical properties of the Longmen Mountain, Southwestern China[J]. Chinese Journal ofApplied and Environmental Biology, 2012, 18(6): 911-916] DOI:10.3724/sp.j.1145.2012.00911
[31] 孙骞, 王兵, 周怀平, 等. 黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性[J]. 生态学杂志, 2020, 39(3):766-774. [SUN Qian, WANG Bing, ZHOU Huaiping, et al. Spatial variation of ecological stoichiometry of soil C, N and P in a small catchment of loess hilly area[J]. Chinese Journal of Ecology, 2020, 39(3): 766-774] DOI:10.13292/j.1000-4890.202003.037
[32] 刘辉, 韩永伟, 刘华民, 等. 白沟引河流域草本植被碳氮磷含量及化学计量学分析[J]. 生态科学, 2023, 42(1):155-163.[LIUHui, HAN Yongwei, LIU Huamin,et al. Analysis of concentration and stoichiometry of carbon, nitrogen, and phosphorus in herbage in Baigou River basin[J]. Ecological Science, 2023, 42(1): 155-163] DOI:10.14108/j.cnki.1008-8873.2023.01.018
[33] 刘强, 林伟通, 詹红星, 等. 粤北石灰岩山地天然次生林优势乔木林分土壤-根系-叶片生态化学计量特征[J]. 防护林科技, 2021(6):5-10+18. [LIU Qiang, LIN Weitong, ZHAN Hongxing, et al. Ecochemical Metrological Characteristics of Soil,Root and Leaf in the Dominant Arbor Stand in Natural Secondary Forest in Limestone Mountain Area of Northern Guangdong Province[J]. Protection Forest Science and Technology, 2021(6): 5-10+18] DOI:10.13601/j.issn.1005-5215.2021.06.002
[34] 罗艳, 贡璐, 朱美玲, 等. 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征[J]. 生态学报, 2017, 37(24):8326-8335. [LUO Yan, GONG Lu, ZHU Meiling, et al. Stoichiometry characteristics of leaves and soil of four shrubs in the upper reaches of the Tarim River Desert[J]. Acta Ecologica Sinica, 2017, 37(24): 8326-8335] DOI: 10.5846 /stxb201611222379
[35] 戚德辉, 温仲明, 王红霞, 等. 黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应[J]. 生态学报, 2016, 36(20):6420-6430. [QI Dehui, WEN Zhongming, WANG Hongxia, et al. Stoichiometry traits of carbon, nitrogen, and phosphorus in plants of different functional groups and their responses to micro-topographical variations in the hilly and gully region of the Loess Plateau, China[J]. Acta Ecologica Sinica, 2016, 36(20): 6420-6430] DOI: 10.5846 /stxb201504090720
[36] 阿依敏·波拉提, 安沙舟, 董乙强, 等. 巴音布鲁克高寒草原不同退化程度土壤化学计量比特征[J]. 新疆农业科学, 2018, 55(5):957-965 [AYIMIN Bolati, AN Shazhou, DONG Yiqiang, et al. Soil stoichiometry characteristics in different degradation stages of alpine steppe in Bayanbulak[J]. Xinjiang Agricultural Sciences, 2018, 55(5): 957-965] DOI:10.6048/j.issn.1001-4330.2018.05.020
[37] Fox T R, Comerford N B. Rhizosphere phosphatase activity and phosphatase hydrolyzable organic phosphorus in two forested spodosols[J]. Soil Biology & biochemistry, 1992, 24(6): 579-583. DOI:10.1016/0038-0717(92)90083-A
[38] YIN Hui, ZHENG Hongwei, ZHANG Bo, et al. Stoichiometry of C:N:P in the roots of Alhagi Sparsifolia is more sensitive to soil nutrients than aboveground organs[J]. Frontiers in Plant Science. 2021, 12:698961. DOI: 10.3389/fpls.2021.698961

相似文献/References:

[1]牛赟,刘贤德,敬文茂,等.祁连山北坡土壤特性与植被垂直分布的关系[J].山地学报,2013,(05):527.
 NIU Yun,LIU Xiande,JING Wenmao,et al.Relationship between Characteristics of Soil and Vertical Distribution of Vegetation on the Northern Slope of Qilian Mountains[J].Mountain Research,2013,(6):527.
[2]张萍,刘宏茂,陈爱国,等.西双版纳热带山地利用过程中的土壤退化[J].山地学报,2001,(01):9.
[3]孙艳玲,郭鹏,刘洪斌,等.基于GIS重庆市土壤养分贫瘠化研究[J].山地学报,2002,(S1):125.
[4]宫怡文,刘键,李祥妹.西藏自治区小康示范村土壤养分状况及效益分析[J].山地学报,2003,(S1):113.
[5]庞学勇,包维楷.岷江柏林下土壤养分特征及种群间差异分析[J].山地学报,2005,(05):596.
[6]彭岳林,钱成,蔡晓布,等.西藏不同退化高寒草地土壤酶的活性[J].山地学报,2007,(03):344.
[7]郜文军,王印传,陈飞,等.小流域自然土壤与耕作土壤养分比较及影响因素分析[J].山地学报,2008,(05):632.
[8]庞家平,陈明勇,唐建维,等.橡胶-大叶千斤拔复合生态系统中的植物生长与土壤水分养分动态[J].山地学报,2009,(04):433.
[9]潘丽冰,徐凡珍,沙丽清.生物炭对土壤理化性质及橡胶幼苗生物量的影响[J].山地学报,2015,(04):449.
 PAN Libing,XU Fanzhen,SHA Liqing.Effect of Biochar on Soil Properties and Rubber(Hevea brasilensis) Seedling Biomass[J].Mountain Research,2015,(6):449.
[10]余 杭,罗清虎,李松阳,等.灾害干扰受损森林土壤的碳、氮、磷初期恢复特征与变异性[J].山地学报,2020,(4):532.[doi:10.16089/j.cnki.1008-2786.000531]
 YU Hang,LUO Qinghu,LI Songyang,et al.Initial Recovery Characteristics and Variability of Soil Carbon, Nitrogen, and Phosphorus in the Damaged Forests under Disaster Disturbance[J].Mountain Research,2020,(6):532.[doi:10.16089/j.cnki.1008-2786.000531]
[11]黄得志,盛 浩*,尹泽润,等.底土碳氮磷比值及其环境因子沿海拔变化——以湘东大围山为例[J].山地学报,2021,(5):621.[doi:10.16089/j.cnki.1008-2786.000625)]
 HUANG Dezhi,SHENG Hao*,YIN Zerun,et al.Soil C, N, and P Ratios and Their Environmental Controls along Elevation Gradients of Subsoil: A Case Study of Mt. Daweishan of Eastern Hunan Province, China[J].Mountain Research,2021,(6):621.[doi:10.16089/j.cnki.1008-2786.000625)]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 06- 09; 改回日期(Accepted date): 2023-12- 01
基金项目(Foundation item): 国家自然科学基金(42071132); 福建省自然科学基金(2021J01060)。[National Natural Science Foundation of China(42071132); Natural Science Foundation of Fujian Province(2021J01060)]
作者简介(Biography): 过怡婷(2000-),女,江苏无锡人,硕士研究生,主要研究方向:自然资源管理。[GUO Yiting(2000-), female, born in Wuxi, Jiangsu province, M.Sc. candidate, research on natural resources management] E-mail: 2768863857@qq.com
*通讯作者(Corresponding author): 林勇明(1982-),男,博士,教授,主要研究方向:恢复生态学。[LIN Yongming(1982-), male, Ph.D., professor, research on restoration ecology] E-mail: monkey1422@163.com
更新日期/Last Update: 2023-11-30