[1]姚鸿坤,邹 强*,蒋 虎,等.泥石流承灾体群体效应特征反演——以7·12四川平武县黑水沟泥石流为例[J].山地学报,2024,(1):47-59.[doi:10.16089/j.cnki.1008-2786.000803]
 YAO Hongkun,ZOU Qiang*,JIANG Hu,et al.Collective Effects of Debris Flow Striking on Structure Clusters Downstream: A Case Study of the Heishui Gully Debris Flow on July 12th in Pingwu County, Sichuan Province, China[J].Mountain Research,2024,(1):47-59.[doi:10.16089/j.cnki.1008-2786.000803]





Collective Effects of Debris Flow Striking on Structure Clusters Downstream: A Case Study of the Heishui Gully Debris Flow on July 12th in Pingwu County, Sichuan Province, China
姚鸿坤12邹 强1*蒋 虎12周文韬12陈思谕13周 斌12
(1. 中国科学院、水利部成都山地灾害与环境研究所 山地自然灾害与工程安全全国重点实验室,成都 610299; 2.中国科学院大学,北京 100049; 3.西南科技大学 环境与资源学院,四川 绵阳 621010)
YAO Hongkun12 ZOU Qiang1* JIANG Hu12 ZHOU Wentao12 CHEN Siyu13 ZHOU Bin12
(1. State Key Laboratory of Mountain Hazards and Engineering Resilience,Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; 2. University of Chinese Academy of Sciences,Beijing 100049,China; 3. School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China)
建筑群 黑水沟 泥石流 承灾动力响应
structure clusters the Heishui gully debris flow collective effect
群体建筑结构的分布格局、结构形式等因素影响泥石流冲击过程和致灾表现。泥石流冲击存在绕流现象、放大作用和遮蔽效应,泥石流与建筑群之间存在复杂的流固耦合模态,但针对这类泥石流承灾体群体效应的过程与机制仍不清晰。本研究通过野外调查、物理实验和数值模拟等方法,调查泥石流承灾体群体效应特征,反演泥石流冲击流场分布和建筑损伤过程,提出了一套建筑群对泥石流的承灾动力响应特征分析方法。研究结果表明:(1)泥石流流场存在放大作用。面对泥石流冲击,建筑群的破坏导致沟道区域流速增加20%,建筑群区域流速增加46%。(2)泥石流流场存在绕流现象。建筑群阻碍泥石流直进输运,导致建筑拐角之间存在局部压力高度集中现象。(3)在建筑群中存在明显的遮蔽效应。失去建筑的上游遮蔽保护可使下游建筑受到的泥石流冲击强度增加120%。(4)泥石流致灾过程中,建筑群周边与内部的泥石流冲击特征差异明显。在建筑群外围,受前排建筑破坏的影响,泥石流流线后排建筑受泥石流冲击时刻提前10 s,泥石流冲击强度增加速率达2.1倍;(5)泥石流对建筑群内建筑冲击强度分为冲击力急剧增加—缓慢增加—逐渐稳定三个阶段,对应泥石流流深增高、缓慢淤积过程。研究结果可以为泥石流易发区村落城镇的建筑规划布局和防灾减灾措施提供科学参考。
The destructive consequence of debris flow striking on structure clusters are subject to the placement of each structure downstream at gully mouth and their structural types. In the process of debris flows running through structure clusters, it exhibits several observable phenomena, such as flow diversion, amplification effect, and shielding action, which are resultants of complex fluid-solid coupling mechanism; unfortunately, there was big unknown to the processes and mechanisms of the collective effects of debris flow on grouped structures.
In this study, it introduced an approach to mathematically describing the collective responses of structure clusters under striking of debris flows. It conducted field investigation, indoor experiments, and numerical simulation, then fluid stress field of debris flow was obtained for a proper interpretation of the complex process of structure damages.
(1)There was an amplification effect for debris flow running through grouped structures. Under debris flow attacking, damaging structure clusters leaded to an increase of 20% in flow velocity in debris flow channel and a 46% increase inside the structures.
(2)There was a flow diverging phenomenon for debris flow running through grouped structures. As debris flow traversing a structure cluster was impeded, it immediately diverged around the block in a circular pattern, leading to a localized pressure concentration at the corners of structures.
(3)There was a noticeable shielding action occurred in structure cluster during debris flow running through grouped structure. Without shelter protection from upstream structures, downstream structures experienced a heavy hit of debris flow at a maximum of 120% increase in impact strength.
(4)There were noticeable differences in responses of a structure cluster to debris flow striking at the positions of its periphery and interior. At the periphery of a structure cluster, affected by upstream structure ruined by debris flow striking, the immediately downstream structure had a 10 seconds earlier time of being attacked by debris flow, with an impact strength of increasing by 2.1 times.
(5)The impact strength of debris flow on a structure cluster could be divided into three stages: rapid increase phase, slow increase phase, and gradual stabilization phase, which corresponded to the process of increasing debris flow depth and slow siltation.
The research provide scientific references for construction layout planning and geo-disaster prevention in debris flow-prone areas of mountain villages.


[1] 谢洪, 钟敦伦, 韦方强, 等. 我国山区城镇泥石流灾害及其成因[J]. 山地学报, 2006, 24(1): 79-87.[XIE Hong, ZHONG Dunlun, WEI Fangqiang, et al. Debris flow hazards and their formation causes in mountain urban area of China[J]. Mountain Research, 2006, 24(1): 79-87] DOI: 10.3969/j.issn.1008-2786.2006.01.011
[2] 崔鹏, 韦方强, 谢洪, 等. 中国西部泥石流及其减灾对策[J]. 第四纪研究, 2003, 23(2): 142-151.[CUI Peng, WEI Fangqing, XIE Hong, et al. Debris flow and disaster reduction strategies in western China[J]. Quaternary Sciences, 2003, 23(2): 142-151] DOI: 10.3321/j.issn: 1001-7410.2003.02.004
[3] DU Jun, HE Xiaoyan, WANG Zhaoyin, et al. Experimental study of the interaction between building clusters and flash floods[J]. Journal of Mountain Science, 2015, 12(5): 1334-1344. DOI: 10.1007/s11629-014-3170-6
[4] 曾超. 泥石流作用下建筑物易损性评价方法[D]. 北京: 中国科学院大学, 2014: 128-144.[ZENG Chao. Vulnerability assessment of building to debris flow hazard[D]. Beijing: University of Chinese Academy of Sciences, 2014: 128-144] DOI: 10.11867/j.issn.1001-8166.2012.11.1211
[5] GAO L, ZHANG L M, CHEN H X. Two-dimensional simulation of debris flow impact pressures on buildings[J]. Engineering Geology, 2017, 226: 236-244. DOI: 10.1016/j.enggeo.2017.06.012
[6] AN Huicong, OUYANG Chaojun, WANG Dongpo. A new two-phase flow model based on coupling of the depth-integrated continuum method and discrete element method[J]. Computers and Geosciences, 2021, 146: 104640. DOI: 10.1016/j.cageo.2020.104640
[7] OUYANG Chaojun, ZHOU Kaiqi, XU Qiang, et al. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China[J]. Landslides, 2017, 14(2): 705-718. DOI: 10.1007/s10346-016-0764-9
[8] MA Xiaolong, ZHANG Wei, LI Xuan, et al. Evaluating tsunami damage of wood residential buildings in a coastal community considering waterborne debris from buildings[J]. Engineering Structures, 2021, 244: 112761. DOI: 10.1016/j.engstruct.2021.112761
[9] 高秀青. 共生型泥石流对建筑物结构损伤的多尺度分析[J]. 灾害学, 2020, 35(4): 13-16+32.[GAO Xiuqing. Multi-scale analysis of damage caused by symbiotic debris flow to building structure[J]. Journal of Catastrophology, 2020, 35(4): 13-16+32] DOI: 10.3969/j.issn.1000-811X.2020.04. 003
[10] LUO H Y, FAN R L, WANG H J, et al. Physics of building vulnerability to debris flows, floods and earth flows[J]. Engineering Geology, 2020, 271: 105611. DOI: 10.1016/j.enggeo.2020.105611
[11] 曾超, 贺拿, 宋国虎. 泥石流作用下建筑物易损性评价方法分析与评价[J]. 地球科学进展, 2012, 27(11): 1211-1220.[ZENG Chao, HE Na, SONG Guohu. Analysis and assessment of methods to assess vulnerability of building in debris flow hazard[J]. Advances in Earth Science, 2012, 27(11): 1211-1220] DOI: 10.11867/j.issn.1001-8166.2012.11.1211
[12] ZHANG J, GUO Z X, WANG D, et al. The quantitative estimation of the vulnerability of brick and concrete wall impacted by an experimental boulder[J]. Natural Hazards and Earth System Sciences, 2016, 16(2): 299-309. DOI: 10.5194/nhess-16-299-2016
[13] 狄生奎, 李健, 张得强. 泥石流冲击作用下框架结构的破坏机理[J]. 山地学报, 2012, 30(2): 201-206.[DI Shengkui, LI Jian, ZHANG Deqiang. Damage mechanism of frame structures impacted by debris flow[J]. Mountain Research, 2012, 30(2): 201-206] DOI: 10.16089/j.cnki.1008-2786.2012.02.006
[14] 李聪, 邹强, 蒋虎, 等. 泥石流作用下夯土建筑灾变响应特征研究[J]. 防灾减灾工程学报, 2022, 42(1): 42-50.[LI Cong, ZOU Qiang, JIANG Hu, et al. Disaster response characteristics of rammed earth buildings to debris flow[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(1): 42-50] DOI: 10.13409/j.cnki.jdpme.200201103001
[15] 司光武, 陈剑刚, 陈晓清, 等. 山洪对村镇建筑破坏方式与建筑防洪加固技术研究现状[J]. 科学技术与工程, 2021, 21(23): 9671-9681.[SI Guangwu, CHEN Jiangang, CHEN Xiaoqing, et al. Review of the types of rural building damage caused by the flash flood and the flood-resistant strengthening techniques[J]. Science Technology and Engineering, 2021, 21(23): 9671-9681] DOI: 10.3969/j.issn.1671-1815.2021.23.003
[16] DALL'OSSO F, MARAMAI A, GRAZIANI L, et al. Applying and validating the PTVA-3 Model at the Aeolian Islands, Italy: Assessment of the vulnerability of buildings to tsunamis[J]. Natural Hazards and Earth System Sciences, 2010, 10(9): 1547-1562. DOI: 10.5194/nhess-10-2007-2010
[17] WIJATMIKO I, MURAKAMI K. Three-dimensional numerical simulation of bore type tsunami propagation and run up on to a dike[J]. Journal of Hydrodynamics, 2010, 22(5): 259-264. DOI: 10.1016/S1001-6058(09)60204-3
[18] YANG Wanli, WEN Zhibin, LI Fuhai, et al. Study on tsunami force mitigation of the rear house protected by the front house[J]. Ocean Engineering, 2018, 159: 268-279. DOI: 10.1016/j. oceaneng. 2018.04.034
[19] VITTAL N, KOTHYARI U C, HAGHIGHAT M. Clear water scour around bridge pier group[J]. Journal of Hydraulic Engineering, 1994, 120(11): 1309-1318. DOI: 10.1061/(ASCE)0733-9429(1994)120:11(1309)
[20] KHAPLE S, HANMAIAHGARI P R, GAUDIO R, et al. Interference of an upstream pier on local scour at downstream piers[J]. Acta Geophysica, 2017, 65(1): 29-46. DOI: 10.1007/s11600-017-0004-2
[21] KIM H S, ROH M, NABI M. Computational modeling of flow and scour around two cylinders in staggered array[J]. Water, 2017, 9(9): 654. DOI: 10.3390/w9090654
[22] MALIK R, BALDEV S. Local scour around closely placed bridge piers[J]. ISH Journal of Hydraulic Engineering, 2018: 396-403. DOI: 10.1080/09715010.2018.1559772
[23] MALIK R, BALDEV S. Interference between pier models and its effects on scour depth[J]. SN Applied Sciences, 2020, 68(2): 68. DOI: 10.1007/s42452-019-1868-3
[24] 柳金峰, 游勇, 陈兴长. 震后堵溃泥石流的特征及防治对策研究——以四川省平武县唐房沟为例[J]. 四川大学学报(工程科学版), 2010, 42(5): 68-75.[LIU Jinfeng, YOU Yong, CHEN Xingchang. The characteristics and countermeasures of dam-breaking debris flow after Wenchuan Earthquake: A case study of the Tangfang Gully in Pingwu county, Sichuan province[J]. Journal of Sichuan University(Engineering Science Edition), 2010, 42(5): 68-75] DOI: 10.15961/j.jsuese.2010.05.007
[25] 唐邦兴, 周必凡, 吴积善. 中国泥石流[M]. 北京: 商务印书馆, 2000: 1-375.[TANG Bangxing, ZHOU Bifan, WU Jishan. Debris flow in China[M]. Beijing: The Commercial Press, 2000: 1-375]
[26] DZ/T 0220-2006. 泥石流灾害防治工程勘查规范[S]. 北京: 中国标准出版社, 2006.[DZ/T 0220-2006. Specification of geological investigation for debris flow stabilization[S]. Beijing: China Standard Publishing House, 2006]
[27] WHIPPLE K X. Open-channel flow of Bingham fluids: Applications in debris-flow research[J]. Journal of Geology, 1997, 105(2): 243-262. DOI: 10.1086/515916
[28] LI Yanggui, WANG Lei, ZHAO Yun, et al. Numerical investigation of the flow characteristics of Bingham fluid on a slope with corrected smooth particle hydrodynamics[J]. Frontiers in Environmental Science, 2022, 10: 1-14. DOI: 10.3389/fenvs.2022.1060703
[29] RICKENMANN D, LAIGLE D, MCARDELL B W, et al. Comparison of 2D debris-flow simulation models with field events[J]. Computational Geosciences, 2006, 10(2): 241-264. DOI: 10.1007/s10596-005-9021-3
[30] PRIETO J A, JOURNEAY M, ACEVEDO A B, et al. Development of structural debris flow fragility curves(debris flow buildings resistance)using momentum flux rate as a hazard parameter[J]. Engineering Geology, 2018, 239: 144-157. DOI: 10.1016/j.enggeo.2018.03.014
[31] JAKOB M, STEIN D, ULMI M. Vulnerability of buildings to debris flow impact[J]. Natural Hazards, 2012, 60(2): 241-261. DOI: 10.1007/s11069-011-0007-2
[32] FEMA P-58, Seismic performance assessment of buildings[S]. Alaska, CA, 2014. DOI:10.4231/D3ZW18S8N
[33] FEMA P-646, MAHONEY M. Guidelines for design of structures for vertical evacuation from tsunamis[S]. Redwood City, CA, 2008
[34] KANG H S, KIM Y T. Physical vulnerability function of buildings impacted by debris flow[J]. Journal of the Korean Society of Hazard Mitigation, 2014, 14(5): 133-143. DOI: 10.9798/KOSHAM. 2014.14.5.133
[35] WEI Fangqiang, HU Kaiheng, LOPEZ J L, et al. Method and its application of the momentum model for debris flow risk zoning[J]. Chinese Science Bulletin, 2003, 48(6): 594-598. DOI: 10.1360/03tb9126
[36] HU Kaiheng, CUI Peng, ZHANG Jianqiang. Characteristics of damage to buildings by debris flows on 7 August 2010 in Zhouqu, western China[J]. Natural Hazards and Earth System Sciences, 2012, 12(7): 2209-2217. DOI: 10.5194/nhess-12-2209-2012
[37] LUO H Y, SHEN P, ZHANG L M. How does a cluster of buildings affect landslide mobility: A case study of the Shenzhen landslide[J]. Landslides, 2019, 16(12): 2421-2431. DOI: 10.1007/s10346-019-01239-y
[38] LUO H Y, ZHANG L M, WANG H J, et al. Process of building collapse caused by the Po Shan Road landslide in Hong Kong on 18 June 1972[J]. Landslides, 2021, 18(12): 3769-3780. DOI: 10.1007/s10346-021-01745-y
[39] ZANCHETTA G, SULPIZIO R, PARESCHI M T, et al. Characteristics of May 5-6, 1998 volcaniclastic debris flows in the Sarno area(Campania, southern Italy): Relationships to structural damage and hazard zonation[J]. Journal of Volcanology and Geothermal Research, 2004, 133(1-4): 377-393. DOI: 10.1016/s0377-0273(03)00409-8
[40] ZHANG Shuai, ZHANG Limin, LI Xueyou, et al. Physical vulnerability models for assessing building damage by debris flows[J]. Engineering Geology, 2018, 247: 145-158. DOI: 10.1016/j.enggeo.2018.10.017
[41] 周明慧, 熊海贝, 赵书平, 等. 泥石流冲击力简化计算方法——以舟曲县三眼峪泥石流为例[J]. 山地学报, 2017, 35(2): 187-194.[ZHOU Minghui, XIONG Haibei, ZHAO Shuping, et al. Simplified calculation of impact force of debris flow based on the case study of Sanyan Valley debris flow[J]. Mountain Research, 2017, 35(2): 187-194] DOI: 10.16089/j.cnki.1008-2786.000211


收稿日期(Received date): 2023- 06-25; 改回日期(Accepted date):2024- 02- 02
基金项目(Foundation item): 国家自然科学基金(42171085); 中国科学院西部之光基金(xbzg-zdsys-202104); 四川省科技厅计划(2023YFS0434)。[National Nature Science Foundation of China(42171085); West Light Foundation of Chinese Academy of Sciences(xbzg-zdsys-202104); Sichuan Science and Technology Planning Program(2023YFS0434)]
作者简介(Biography): 姚鸿坤(1997-),男,江西吉安人,硕士研究生,主要研究方向:山地灾害动力过程。[YAO Hongkun(1997-), male, born in Jian, Jiangxi province, M.Sc. candidate, research on the dynamic process of mountain disasters] E-mail:yhk@imde.ac.cn
*通讯作者(Corresponding author): 邹强(1982-),男,博士,研究员,主要研究方向:山地灾害致灾机理与风险。[ZOU Qiang(1982-), male, Ph.D., professor, research on disaster-causing mechanisms and risks of mountain hazards] E-mail:zouqiang@imde.ac.cn
更新日期/Last Update: 2024-01-30